

Guía docente 270417 - PAA - Programación y Algoritmia Avanzada

Última modificación: 02/02/2024

Unidad responsable: Facultad de Informática de Barcelona

Unidad que imparte: 723 - CS - Departamento de Ciencias de la Computación.

Titulación: GRADO EN INTELIGENCIA ARTIFICIAL (Plan 2021). (Asignatura obligatoria).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: JOSÉ LUIS BALCÁZAR NAVARRO

Otros: Segon quadrimestre:

JOSÉ LUIS BALCÁZAR NAVARRO - 11, 12

JORDI DELGADO PIN - 11, 12

CAPACIDADES PREVIAS

-

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.

CE04. Diseñar y utilizar de forma eficiente los tipos y estructuras de datos más adecuados a la resolución de un problema.

CE10. Analizar, diseñar, construir y mantener aplicaciones de forma robusta, segura y eficiente, eligiendo el paradigma y los lenguajes de programación más adecuados.

CE12. Dominar los principios fundamentales y modelos de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar, y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la inteligencia artificial.

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

Genéricas:

CG2. Utilizar los conocimientos fundamentales y metodologías de trabajo sólidas adquiridos durante los estudios para adaptarse a los nuevos escenarios tecnológicos del futuro.

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas.

CG8. Observar un ejercicio ético de la profesión en todas sus facetas, aplicando criterios éticos en el diseño de sistemas, algoritmos, experimentos, utilización de datos, de acuerdo con los sistemas éticos recomendados por los organismos nacionales e internacionales, con especial énfasis en seguridad, robustez, privacidad, transparencia, trazabilidad, prevención de sesgos (de raza, género, religión, territorio, etc.) y respeto a los derechos humanos.

Transversales:

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

Fecha: 19/02/2024 **Página:** 1 / 13

Básicas:

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

METODOLOGÍAS DOCENTES

_

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- 1. Aprender a analizar algoritmos y conocer las notaciones asintóticas.
- 2.-
- 3.-
- 4.-

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	30,0	20.00
Horas grupo grande	30,0	20.00
Horas aprendizaje autónomo	90,0	60.00

Dedicación total: 150 h

CONTENTOOS

CONTENTEDOS		
_		
Descripción:		
-		
Descripción:		
_		
_		
,		
Descripción:		
_		
-		
Decembelén		
Descripción:		
_		

Fecha: 19/02/2024 **Página:** 2 / 13

ACTIVIDADES

-

Descripción:

-

Objetivos específicos:

1, 3

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones

CG2. Utilizar los conocimientos fundamentales y metodologías de trabajo sólidas adquiridos durante los estudios para adaptarse a los nuevos escenarios tecnológicos del futuro.

CE04. Diseñar y utilizar de forma eficiente los tipos y estructuras de datos más adecuados a la resolución de un problema.

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.

CE10. Analizar, diseñar, construir y mantener aplicaciones de forma robusta, segura y eficiente, eligiendo el paradigma y los lenguajes de programación más adecuados.

CE12. Dominar los principios fundamentales y modelos de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar, y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la inteligencia artificial.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 6h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 4h

Fecha: 19/02/2024 Página: 3 / 13

Descripción:

-

Objetivos específicos:

7

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CE04. Diseñar y utilizar de forma eficiente los tipos y estructuras de datos más adecuados a la resolución de un problema. CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.

CE10. Analizar, diseñar, construir y mantener aplicaciones de forma robusta, segura y eficiente, eligiendo el paradigma y los lenguajes de programación más adecuados.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 12h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 8h

Fecha: 19/02/2024 Página: 4 / 13

Descripción:

-

Objetivos específicos:

7

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CE04. Diseñar y utilizar de forma eficiente los tipos y estructuras de datos más adecuados a la resolución de un problema. CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.

CE10. Analizar, diseñar, construir y mantener aplicaciones de forma robusta, segura y eficiente, eligiendo el paradigma y los lenguajes de programación más adecuados.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 14h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 8h

Fecha: 19/02/2024 Página: 5 / 13

Descripción:

-

Objetivos específicos:

Δ

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 8h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 6h

Descripción:

-

Objetivos específicos:

4

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 14h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 8h

Fecha: 19/02/2024 Página: 7 / 13

Descripción:

-

Objetivos específicos:

1, 3, 4

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas.

- CG2. Utilizar los conocimientos fundamentales y metodologías de trabajo sólidas adquiridos durante los estudios para adaptarse a los nuevos escenarios tecnológicos del futuro.
- CE04. Diseñar y utilizar de forma eficiente los tipos y estructuras de datos más adecuados a la resolución de un problema.
- CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos
- CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.
- CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.
- CE10. Analizar, diseñar, construir y mantener aplicaciones de forma robusta, segura y eficiente, eligiendo el paradigma y los lenguajes de programación más adecuados.
- CE12. Dominar los principios fundamentales y modelos de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar, y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la inteligencia artificial.
- CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.
- CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.
- CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 14h Actividades dirigidas: 2h Aprendizaje autónomo: 12h

Descripción:

-

Objetivos específicos:

4

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 18h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 12h

Fecha: 19/02/2024 **Página:** 9 / 13

Descripción:

-

Objetivos específicos:

4

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 19h Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 10h

Descripción:

-

Objetivos específicos:

2, 4

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas

CG8. Observar un ejercicio ético de la profesión en todas sus facetas, aplicando criterios éticos en el diseño de sistemas, algoritmos, experimentos, utilización de datos, de acuerdo con los sistemas éticos recomendados por los organismos nacionales e internacionales, con especial énfasis en seguridad, robustez, privacidad, transparencia, trazabilidad, prevención de sesgos (de raza, género, religión, territorio, etc.) y respeto a los derechos humanos.

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.

CE12. Dominar los principios fundamentales y modelos de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar, y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la inteligencia artificial.

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 23h Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 8h Aprendizaje autónomo: 10h

Descripción:

-

Objetivos específicos:

2, 4

Competencias relacionadas:

CG4. Razonar, analizando la realidad y diseñando algoritmos y formulaciones que la modelen. Identificar problemas y construir soluciones algorítmicas o matemáticas válidas, eventualmente nuevas, integrando el conocimiento multidisciplinar necesario, valorando distintas alternativas con espíritu crítico, justificando las decisiones tomadas, interpretando y sintetizando los resultados en el contexto del dominio de aplicación y estableciendo generalizaciones metodológicas a partir de aplicaciones concretas.

CG8. Observar un ejercicio ético de la profesión en todas sus facetas, aplicando criterios éticos en el diseño de sistemas, algoritmos, experimentos, utilización de datos, de acuerdo con los sistemas éticos recomendados por los organismos nacionales e internacionales, con especial énfasis en seguridad, robustez, privacidad, transparencia, trazabilidad, prevención de sesgos (de raza, género, religión, territorio, etc.) y respeto a los derechos humanos.

CE13. Evaluar la complejidad computacional de un problema, identificar estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

CE02. Dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y su aplicación para la resolución de problemas.

CE03. Identificar i aplicar els procediments algorítmics bàsics de les tecnologies informàtiques per a dissenyar solucions a problemes, analitzant la idoneïtat i complexitat dels algorismes proposats.

CE12. Dominar los principios fundamentales y modelos de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar, y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la inteligencia artificial.

CT4. Trabajo en equipo. Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

Dedicación: 22h Grupo grande/Teoría: 6h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 12h

SISTEMA DE CALIFICACIÓN

Parte de la sección de Algorítmica (inicial del curso) requerirá para su evaluación una práctica de dimensión modesta que se presentará al principio del tema Programación Dinámica y se evaluará en su entrega (nota P).

Adicionalmente habrá la nota del parcial (E) y la del examen final (nota F). La nota del curso se obtendrá mediante el siguiente criterio:

max(F*0.8, (E*0.3 + F*0.5)) + P*0.2

Reevaluación

Sólo se pueden presentar en el examen de reevaluación quien previamente se haya presentado en el examen final y lo haya suspendido.

BIBLIOGRAFÍA

Básica:

- Sipser, M. Introduction to the theory of computation. 3rd ed. Boston: Cengage Learning, 2013. ISBN 9781133187790.
- Cases, R.; Màrquez, L. Llenguatges, gramàtiques i autòmats: curs bàsic. 2a ed. Edicions UPC, 2003. ISBN 8483017288.
- Serna, M. et al.. Els Límits de la computació: indecidibilitat i NP-completesa. 2a ed. Edicions UPC, 2004. ISBN 9788483017845.
- Brassard, G.; Bratley, P., Fundamentals of algorithmics. Prentice-Hall International, 1996. ISBN 9780130734877.

Complementaria:

- Skiena, S.S. The algorithm design manual. Third edition. Cham: Springer, 2020. ISBN 9783030542559.
- Motwani, R., Raghavan, P.. Randomized Algorithms. Cambridge: Cambridge University Press, 1995. ISBN 0521474655.
- Lee, K. D., Hubbard, S.,. Data structures and algorithms with Python. New York: Springer, 2014. ISBN 9783319130712.
- Hopcroft, J.E.; Motwani, R.; Ullman, J.D.. Introduction to automata theory, languages, and computation. Pearson/Addison Wesley, 2007. ISBN 0321462254.

RECURSOS

Enlace web:

- https://www.cs.upc.edu/~balqui/paa.html

Fecha: 19/02/2024 **Página:** 13 / 13