

Guía docente 280619 - 280619 - Teoría del Buque y Construcción Naval

Última modificación: 25/10/2023

Unidad responsable: Facultad de Náutica de Barcelona

Unidad que imparte: 742 - CEN - Departamento de Ciencia e Ingeniería Náuticas.

Titulación: GRADO EN NÁUTICA Y TRANSPORTE MARÍTIMO (Plan 2010). (Asignatura obligatoria).

Curso: 2023 Créditos ECTS: 9.0 Idiomas: Catalán

PROFESORADO

Profesorado responsable: MARCEL·LA CASTELLS SANABRA

Otros: Primer quadrimestre:

MARCEL·LA CASTELLS SANABRA - GNTM ANTONI IGNACI LLULL MARROIG - GNTM

REQUISITOS

Tener aprobada la asignatura de Teoría del buque de Q4 del Grado en Náutica y Transporte Marítimo o que la asignatura tenga las condiciones para ser compensada al finalizar el ciclo.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

1. Conocimiento en profundidad de la teoría del Buque. Flotabilidad. Estabilidad estática y dinámica, transversal y longitudinal. Efectos de movimiento y distribución de pesos. Hidrostática e hidrodinámica. Resistencia y propulsión. Compartimentado inundación y varada. Conocimiento amplio de la dinámica de vehículos marinos.

Transversales:

CT6. PERSPECTIVA DE GÉNERO: Conocer y comprender, desde el propio ámbito de la titulación, las desigualdades por razón de sexo y género en la sociedad; integrar las diferentes necesidades y preferencias por razón de sexo y de género en el diseño de soluciones y resolución de problemas.

METODOLOGÍAS DOCENTES

- Recibir, comprender y sintetizar conocimientos.
- Planear y resolver problemas, aportando siempre que sea posible soluciones contextualizadas con relevancia social.
- Desarrollar el razonamiento y espíritu crítico y ser capaz de transformar el propio pensamiento en nuevas direcciones a partir d ela incorporación de las experiencias de los compañeros y compañeras.
- Trabajar tanto de forma individual como colaborativa, dando voz a todas las personas en el aula.
- Aprendizaje basado en prácticas en el simulador de cargas líquidas.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- Repasar los conceptos básicos de los fundamentos sobre flotabilidad y estabilidad y dinámica transversal y longitudinal.
- Conocer las cuestiones relativas a la inundación y varada.
- Conocer los efectos del movimiento, así como la dinámica de vehículos marinos.
- Conocer las propiedades y los elementos estructurales de un buque.
- Conocer la resistencia hidrodinámica, los tipos de propulsión marina y los materiales empleados en la construcción naval.
- Ser capaz de calcular los esfuerzos longitudinales a los que está sometida la estructura de un buque.
- Conocer, comprender y respetar, desde el propio ámbito de la titulación, la diversidad de género, social, cultural y económica.

Por otro lado, uno de los objetivos de esta asignatura es dar el conocimiento, compresión y aptitud de la competencia "Medidas que proced adoptar en el caso de emergencia" de la Tabla A-II/1-5 y la competencia "Medidas que procede adoptar en caso de emergencia de la navegación" de la Tabla A-II/2-9 y la competencia "Control del asiento, estabilidad y esfuerzos" de la Tabla A-II/2-15 según el Convenio Internacional sobre Normas de formación, titulación y guardia para la gente de mar (STCW).

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	135,0	60.00
Horas grupo mediano	45,0	20.00
Horas grupo grande	45,0	20.00

Dedicación total: 225 h

CONTENIDOS

Capítulo 1. Distribución de carga entre dos bodegas

Descripción:

En este capítulo se estudiará la distribución de carga entre dos o más bodegas

Dedicación: 5h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 3h

Capítulo 2. Relación de la tipologia de un buque con su estabilidad

Descripción:

Flotabilidad y Estabilidad estática. Dinámica transversal y longitudinal. En este capítulo se estudiarán las recomendaciones de la IMO sobre la estabilidad de los buques (A-II/2-15.3) y las características propias de la estabilidad en función del tipo de buque: petroleros, pesqueros, rompehielos, buques de alta velocidad, entre otros. Conocimiento de los principios fundamentales de la construcción del buque y las teorías y factores que afectan al trimado y estabilidad y medidas necesarias para prevenir el trimado y la estabilidad (estos conocimientos son necesarios según el Código STCW Tabla A-II/2-15.1).

Dedicación: 30h

Grupo grande/Teoría: 12h Aprendizaje autónomo: 18h

Fecha: 29/01/2024 Página: 2 / 6

Capítulo 3. Carga de grano

Descripción:

- Conocimientos básicos relacionados con la carga de grano a granel
- Cálculo de los momentos volumétricos escorantes
- Normativa de estabilidad para la carga de grano a granel

Dedicación: 20h Grupo grande/Teoría: 8h Aprendizaje autónomo: 12h

Capítulo 4. Trimado óptimo

Descripción:

Estudio del trimado óptimo del buque con el que se obtiene un mejor rendimiento en el consumo de combustible.

Dedicación: 5h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 3h

Capítulo 5. Sistemas estabilizadores y Dinámica de vehículos marinos

Descripción:

- Descripción de los diferentes sistemas estabilizadores existentes.
- Dinámica de vehículos marinos

Dedicación: 5h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 3h

Capítulo 6. Varada

Descripción:

- Acciones iniciales a seguir en el caso de una colisión o varada. Evaluación y control inicial en el caso de avería (Tabla A-II/1-5.2 Código STCW)
- Cálculo de la reacción
- Efecto de la varada sobre los calados, estabilidad transversal y escora.
- Precauciones al hacer varar a un buque (Tabla A-II/2-9.1 código STCW)
- Actuaciones en caso de varada inminente y después de una varada (Tabla A-II/2-9.2 código STCW).
- Puesta a flote de un buque varado, con y sin ayuda (Tabla A-II/2-9.3 código STCW).
- Varada en dique

Dedicación: 35h

Grupo grande/Teoría: 14h Aprendizaje autónomo: 21h

Fecha: 29/01/2024 **Página:** 3 / 6

Capítulo 7. Inundación y Compartimentado

Descripción:

- Clases de inundación.
- Métodos de caálculo de la inundación.
- Efectos de la inundación sobre los calados, escora y estabilidad.
- Acciones a realizar si la colisión es imminente y después de la colisión o debido a cualquier causa se produce el deterioro de la estanqueidad del casco (Tabla A-II/2-9.4 Código STCW)
- Conocimiento y efecto en el trimado y la estabilidad de un buque en el caso de peligro e inundación de un compartimiento. Medidas que se deben tomar (Tabla A-II/2-15.2 Código STCW)

Dedicación: 35h Grupo grande/Teoría: 14h Aprendizaje autónomo: 21h

Capítulo 8. Propiedades y elementos estructurales de un buque

Descripción:

- Descripción y comprensión de las propiedades que debe tener un buque.
- Conocimiento de la estructura, partes y elementos de los buques.

Dedicación: 30h

Grupo grande/Teoría: 12h Aprendizaje autónomo: 18h

Capítulo 9. Resistencia y Propulsión del buque

Descripción:

- Nociones básicas de resistencia hidrodinámica y propulsión.
- Tipos de propulsión.

Dedicación: 15h

Grupo grande/Teoría: 6h Aprendizaje autónomo: 9h

Capítulo 10. Materiales en la construcción naval y su protección

Descripción:

- Nociones de los tipos de materiales empleados en la construcción naval y sus características.
- Mantenimiento.

Dedicación: 10h Grupo grande/Teoría: 4h Aprendizaje autónomo: 6h

Capítulo 11. Esfuerzos longitudinales y vibraciones

Descripción:

- Incidencia de la distribución de la carga y de las olas en los esfuerzos longitudinales de un buque.
- Determinación de las curvas de carga, esfuerzos cortantes y momentos flectores.

Dedicación: 20h Grupo grande/Teoría: 8h Aprendizaje autónomo: 12h

Fecha: 29/01/2024 **Página:** 4 / 6

ACTIVIDADES

Prácticas módulo Loading Control System (LCS) del Simulador de Cargas Líquidas.

Descripción:

El objetivo principal de estas prácticas es que el alumnado integre las competencias adquiridas durante las asignaturas de Teoría del Buque y Teoría del Buque y Construcción Naval de forma totalmente práctica mediante el uso del módulo Loading Conrol System (LCS) del simulador de cargas líquidas (competencias A-II/1-10.1, A-II/1-13.1, A-II/1-13.1.3, A-II/1-13.2, A-II/2-9.4, A-II/2-15.1, A-II/2-15.2 i A-II/2-15.3).

Práctica 1. Familiarización con el módulo Loading Control System (LCS) del Simulador de Cargas Líquidas. El módulo LCS está diseñado para calcular y controlar la carga, el trimado, la estabilidad del buque, ya sea en la condición intacta como en avería y permite introducir datos de cargas líquidas, lastre, provisiones, etc... También permite ajustar la carga del buque para garantizar los valores de asiento, estabilidad y esfuerzos mínimos según las normativas internaciones. Durante la práctica se explicará la estructura del simulador y los diferentes comandos; como acceder a los paneles locales, esquemas de los sistemas y al sistema de control y monitorización.

Práctica 2. Análisis y comparativa de diferentes situaciones de carga, desde el punto de vista de la estabilidad intacta, en avería y esfuerzos. Se analizarán y compararán los siguientes escenarios: situaciones de lastre, de carga, de arrufo y de quebranto.

Práctica 3. Operaciones con los tanques de lastre. Actuar sobre los diferentes elementos (válvulas, bombas etc...) y la leyenda de su estado en el sistema. Al finalizar esta práctica, se realizará un ejercicio práctico realizado individualmente o en equipo sobre conceptos asociados a los objetivos de aprendizaje de la asignatura.

Objetivos específicos:

- Generar experiencias de aprendizaje reproduciendo situaciones lo más verosímiles posibles.
- Promover el trabajo en grupo y la colaboración entre iguales como una estrategia eficaz para resolver problemas.
- Reflexionar y valorar las diferentes actuaciones respecto a la toma de decisiones y situaciones de riesgo.

Entregable:

La nota obtenida en esta actividad corresponderá a la nota del 20% de la evaluación continua de la parte de la calificación de Teoría del Buque.

Competencias relacionadas:

CE23.GEN. Conocimiento en profundidad de la teoría del Buque. Flotabilidad. Estabilidad estática y dinámica, transversal y longitudinal. Efectos de movimiento y distribución de pesos. Hidrostática e hidrodinámica. Resistencia y propulsión. Compartimentado inundación y varada. Conocimiento amplio de la dinámica de vehículos marinos.

CT6. PERSPECTIVA DE GÉNERO: Conocer y comprender, desde el propio ámbito de la titulación, las desigualdades por razón de sexo y género en la sociedad; integrar las diferentes necesidades y preferencias por razón de sexo y de género en el diseño de soluciones y resolución de problemas.

Dedicación: 15h

Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 9h

Fecha: 29/01/2024 **Página:** 5 / 6

SISTEMA DE CALIFICACIÓN

La calificación final es la suma de las calificaciones parciales siguientes:

Nfinal=0.67Ntb+0.33Nc

Nfinal: qualificació final

Ntb: calificación final de teoría del buque Nc: calificación final de construcció naval

Ntb = 40%*examen final +40% *examen parcial+20%*evaluación contínua; es necesario tener una calificación mínima de 4 en el examen parcial para eliminar materia; en caso contrario, se deberá realizar el examen final con toda la materia del curso.

Nc = Nota examen parcial (temas 8 y 9) * 50 % + Nota examen final (temas 10 y 11) * 50 %; es necesario tener una calificación mínima de 4 en el examen parcial para eliminar materia; en caso contrario, se deberá realizar el examen final con toda la materia del curso.

El acto de reevaluación se hará a través de una prueba final escrita donde se evaluará toda la materia del curso.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

- No se puede aprobar el curso sin haber presentado todos los trabajos y las actividades de la avaluación continuada.
- Se considera No presentado el estudiante que no se presente a las pruebas avaluables.
- En ningún caso se puede disponer de ningn tipo de formulario en los controles de aprendizaje o pruebas.

BIBLIOGRAFÍA

Básica:

- Olivella Puig, Joan. Teoría del buque : estabilidad, varada e inundación [en línea]. Barcelona: Edicions UPC, 1996 [Consulta: 14/03/2016]. Disponible a: http://hdl.handle.net/2099.3/36375. ISBN 8483011557.
- Olivella Puig, Joan. Teoría del buque : ola trocoidal, movimientos y esfuerzos [en línea]. Barcelona: Edicions UPC, 1998 [Consulta: 12/06/2014]. Disponible a: http://hdl.handle.net/2099.3/36646. ISBN 8483012596.
- Olivella Puig, Joan. Teoría del buque : flotabilidad y estabilidad [en línea]. 2a ed. Barcelona: Edicions UPC, 1995 [Consulta: 16/06/2012]. Disponible a: http://hdl.handle.net/2099.3/36216. ISBN 848314750.
- Rawson, Kenneth John; Tupper, Eric Charles. Basic ship theory [en línea]. 5a ed. Boston: Butterworth-Heinemann, 2001 [Consulta: 30/05/2022]. Disponible a: https://www-sciencedirect-com.recursos.biblioteca.upc.edu/book/9780750653985/basic-ship-theory. ISBN 280619.
- Muckle, William. Naval architecture for marine engineers. London: Newnes-Butterworths, 1975. ISBN 0408001690.

Complementaria:

- Derrett, Daniel Raymond; Barrass, Bryan. Ship stability for masters and mates. 7th ed. Amsterdam: Elsevier, 2013. ISBN 9780080970936.
- Pursey, Henry James. Merchant ship construction: especially written for the merchant navy. 7a ed. Glasgow: Brown, Son & Ferguson, 1983. ISBN 0851744540.
- White, Geoffrey William. Elementary beam theory and the ship girder. London: Stanford Maritime, 1979. ISBN 0540073520.

RECURSOS

Otros recursos:

Simulador de Cargas Líquidas, LCHS 5000 Large Crude Oil Carrier (LCC) Tanker Simulator de Wärtsilä

Fecha: 29/01/2024 **Página:** 6 / 6