

Guía docente 300515 - CDIOI - Cdio I

Última modificación: 13/10/2025

Unidad responsable: Escuela de Ingeniería de Telecomunicación y Aeroespacial de Castelldefels

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

749 - MAT - Departamento de Matemáticas.

748 - FIS - Departamento de Física.

739 - TSC - Departamento de Teoría de la Señal y Comunicaciones. 751 - DECA - Departamento de Ingeniería Civil y Ambiental.

Titulación: GRADO EN INGENIERÍA DE SATÉLITES (Plan 2024). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 5.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: Definit a la infoweb de l'assignatura.

Otros: Definit a la infoweb de l'assignatura.

CAPACIDADES PREVIAS

Programación básica Matrices

REQUISITOS

Matemàtiques avançades, algebra, calcul Ciencias de la computación Señales y sistemas Introducción al espacio

METODOLOGÍAS DOCENTES

La asignatura combinará sesiones magistrales de teoría así como también sesiones prácticas. En las sesiones magistrales, el profesor alternará el uso de diapositivas con la demostración de ejecución de código en tiempo real. Los estudiantes recibirán el encargo de continuar los aprendizajes de clase en casa, resolviendo problemas guiados, que serán la base para las siguientes sesiones.

Las sesiones prácticas y los deberes deberán realizarse en grupos. Se esperan entre 40 y 50 estudiantes matriculados la primera vez que se imparta la asignatura, en otoño de 2025, y se distribuirán en 10/11 grupos de 4 estudiantes cada uno.

Los estudiantes dispondrán del conjunto de diapositivas, así como del código compartido por el profesor, que estará en un repositorio de código abierto. Las entregas de los estudiantes se harán por una parte en formato de código también subido a un repositorio, y por otra, documentación escrita en forma de informes.

La asignatura evolucionará en torno a la resolución de un reto y su implementación, haciendo uso de tecnología satelital. Con problemas incrementalmente más complejos, los estudiantes explorarán las aplicaciones y también las limitaciones de la tecnología existente, al tiempo que deberán tomar decisiones de ingeniería, asumiendo compromisos entre coste, calidad y velocidad de entrega.

Fecha: 14/10/2025 Página: 1 / 4

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Conocimientos

K1. Identificar los conceptos relacionados con la ingeniería del espacio y su aplicación en el diseño, implementación, fabricación, verificación, control, lanzamiento y puesta en explotación de un satélite.

Habilidades

S3. Diseñar un proyecto relacionado con la ingeniería en general o aplicado al ámbito del espacio y los satélites, gestionando las fases, tareas y actividades implicadas en el desarrollo del mismo.

S4. Contrastar los resultados del trabajo teórico y empírico.

Competencias

C2. Integrarse en equipos de trabajo, participar y asumir responsabilidades, ya sea como un miembro más o realizando tareas de dirección o liderazgo.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	70,0	56.00
Horas grupo grande	55,0	44.00

Dedicación total: 125 h

CONTENIDOS

Observación de la tierra

Descripción:

Misiones publicas vs misiones privadas comerciales

Programa Copernicus

Niveles de procesado de las imágenes (raw, calibradas, \ldots)

Calibración de datos (geométrica, radiométrica, ...)

Satélites Sentinel-2

Multispectral imaging, bands

Índices espectrales (NDWI, NDVI, ...)

SpatioTemporal Asset Catalog (STAC)

Resolución (espacial, temporal)

Latencia de descarga de datos

Planning de adquisiciones, pedicción de pasadas

Actividades vinculadas:

• Downloading a stack of Sentinel-2 images, for a given area of interest and time range

Processing the NDWI index for them, by combining the satellite's bands $\,$

Estimating the coastline from NDWI, and its evolution over time $\,$

Understanding additional patterns on top of this signal

Deliverable 1 with report and source code generated from the previous activities (weeks 1 to 4)

• Planning and execution of a calibration campaign.

• Validation of the Radiometric calibration campaign.

Final exam (weeks 9 to 13)

Dedicación: 45h Grupo grande/Teoría: 21h Aprendizaje autónomo: 24h

Fecha: 14/10/2025 Página: 2 / 4

Procesado de señal

Descripción:

Concepto de "relación señal-ruido"

Algoritmos de eliminación de ruido en imágenes

Impacto en la resolución de imagen y en la preservación de bordes según el algoritmo utilizado (boxcar, NL-Means, Bilateral)

Introducción al aprendizaje automático: clasificación y regresión. Métricas rápidas de regresión (MAE, RMSE)

Fundamentos y visualización de series temporales. Media móvil y estimación de tendencias

Transformada de Fourier y periodograma. Dependencia serial y gráficos de autocorrelación

Métricas de rendimiento (MAE, RMSE, R², Pearson)

Evaluación de la precisión y exactitud de una estimación respecto a una verdad de referencia (ground truth)

Actividades vinculadas:

Aplicación de algoritmos de reducción de ruido en imágenes Sentinel-2

Aplicación de clasificación con aprendizaje automático para la estimación de la línea de costa

Estimación de efectos estacionales y predicción en datos de línea de costa

Evaluación del rendimiento de los diferentes métodos

Examen de mitad de cuatrimestre (semanas 5 a 7)

Dedicación: 38h

Grupo grande/Teoría: 17h Aprendizaje autónomo: 21h

GNSS

Descripción:

Estimación orbital

Constelaciones

Bandes frecuenciales

Mediciones de código y fase

Dillution of precision

Multi-path

Efectos ionosféricos

Métodos de RTK, PPK, PPP

Relevancia para el posicionamiento de satélites y métodos complementarios

Actividades vinculadas:

Práctica con el GNSS de Ardusimple. El kit de evaluación de ublox, interfaces y formatos de datos

Pruebas de distintas técnicas de estimación de posición (PPK, PPP, ...), tipos de órbitas utilizadas, etc., y análisis de las diferencias Entregable 2 con informe y código fuente generado a partir de las actividades anteriores (semanas 7 a 9)

Dedicación: 22h Grupo grande/Teoría: 9h Aprendizaje autónomo: 13h

Programación

Descripción:

Lenguaje Python

Programación orientada a objetos

Multi-processing and multi-threading

Unit testing

Cache de resultados intermedios

Control de versiones (git). Pull requests

Actividades vinculadas:

• Ejercicios en relación a los contenidos, de éste y otros bloques, que requeriran de los conocimientos de programación para su correcto desarrollo

Dedicación: 20h

Grupo grande/Teoría: 8h Aprendizaje autónomo: 12h

SISTEMA DE CALIFICACIÓN

BIBLIOGRAFÍA

Básica:

- Crawley, Edward F.; Malmqvist, Johan; Östlund, Sören; Brodeur, Doris R; Edström, Kristina. Rethinking Engineering Education: The CDIO Approach [en línea]. 2nd ed. 2014. -: Springer International Publishing, 2014 [Consulta: 01/07/2025]. Disponible a: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-3-319-05561-9. ISBN 3-319-05561-5.
- Sanz Subirana, Jaume.; Juan Zornoza, J. Miguel; Hernández Pajares, Manuel; European Space Agency. GNSS data processing. Noordwijk: ESA Publications Division, cop. 2013. ISBN 9789292218867.
- Angelini, Riccardo; Angelats, Eduard; Luzi, Guido; Ribas Prats, Francesca; Masiero, Andrea; Mugnai, Francesc. "Shoreline extraction methods from Sentinel-2 and PlanetScope images". The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [en línea]. 10 maig 2024, vol. XLVIII-1-2024, p. 1-6 [Consulta: 01/07/2025]. Disponible a: https://upcommons.upc.edu/handle/2117/417493.

RECURSOS

Enlace web:

- Nom recurs. Recurso

Otros recursos:

https://earthengine.google.com/

https://planetarycomputer.microsoft.com/

https://www.radcalnet.org />https://payloadspace.com/

https://terrawatchspace.com/

https://gee-community-catalog.org/

https://geoawesome.com/

https://browser.dataspace.copernicus.eu/

https://github.com/rtklibexplorer/RTKLIB

https://github.com/barbeau/awesome-gnss

https://github.com/rokubun/gnss_tools

https://github.com/rokubun/android_rinex

https://github.com/rokubun/gnss_tutorials

https://github.com/acgeospatial/awesome-earthobservation-code

https://survey.stackoverflow.co/2024/

Fecha: 14/10/2025 Página: 4 / 4