

# **Guía docente** 320122 - VPC - Visión por Ordenador

Última modificación: 19/04/2023

Unidad responsable: Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa

**Unidad que imparte:** 739 - TSC - Departamento de Teoría de la Señal y Comunicaciones.

Titulación: GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES (Plan 2009). (Asignatura optativa).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

#### **PROFESORADO**

**Profesorado responsable:** Morros Rubio, Josep Ramon

Otros: Vilaplana Besler, Veronica

Ruiz Hidalgo, Javier

## COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

#### **Específicas:**

CE26. AUD: Conocimientos y capacidades para profundizar en tecnologías específicas del ámbito.

### **METODOLOGÍAS DOCENTES**

- Sesiones presenciales de exposición de los contenidos.
- Sesiones presenciales de trabajo práctico.
- Trabajo autónomo de estudio y realización de ejercicios.
- Preparación y realización de actividades evaluables en grupo.

En las sesiones de exposición de los contenidos el profesor introducirá las bases teóricas de la materia, conceptos, métodos y resultados ilustrándolo con ejemplos convenientes para facilitar su comprensión.

Los estudiantes, de forma autónoma deberán estudiar para asimilar los conceptos, partiendo de los propios apuntes de las clases de teoría y de la bibliografía básica y complementaria. Resulta especialmente importante que los estudiantes lean y por su cuenta los artículos seleccionados de la literatura científica que se les proporcionarán.

Los estudiantes deberán complementar las actividades presenciales de programación con trabajo autónomo no presencial para alcanzar una práctica suficiente en la codificación de algoritmos en el lenguaje de programación pertinente (MATLAB).

### **OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA**

Proporcionar una visión del procesado de imagen y vídeo, con especial énfasis en aplicaciones de análisis del contenido.

Introducir técnicas de extracción de características. Familiarizar al estudiante con los principios fundamentales de la geometría de una, de dos y de múltiples cámaras y las tecnologías de captación y reproducción 3D. Estudiar algoritmos de detección, seguimiento y reconocimiento de objetos. Mostrar ejemplos de aplicación, como el reconocimiento de caras, la extracción de objetos de primer plano o la televisión en 3D. Desarrollar las competencias específicas asociadas al trabajo académico detalladas más adelante.

## HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

| Tipo                       | Horas | Porcentaje |
|----------------------------|-------|------------|
| Horas aprendizaje autónomo | 90,0  | 60.00      |
| Horas grupo grande         | 30,0  | 20.00      |
| Horas grupo pequeño        | 30,0  | 20.00      |

Dedicación total: 150 h

Fecha: 28/07/2023 Página: 1 / 4



### **CONTENIDOS**

### **INTRODUCCIÓN**

#### Descripción:

- Introducción a la visión por computador
- Formación de imágenes, sensores 3D

#### **Actividades vinculadas:**

1,2

Dedicación: 8h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 6h

#### **ESTRUCTURA DE IMAGEN**

#### Descripción:

- Revisión de conceptos de color, textura, filtros y contornos
- Detección Y representación de puntos característicos Y 'Blobs'
- Modelado: RANSAC y alineación de imágenes

#### **Actividades vinculadas:**

1,2

**Dedicación:** 13h Grupo grande/Teoría: 4h Aprendizaje autónomo: 9h

## **APLICACIONES** multicámara y 3D

#### Descripción:

- Geometría con una única cámara
- Calibración de cámaras
- Geometría epipolar: rectificación, detección de disparidad / profundidad
- Reconstrucción 3D: estéreo y multivista, "structure from motion"

#### **Actividades vinculadas:**

1,3

**Dedicación:** 26h Grupo grande/Teoría: 8h Aprendizaje autónomo: 18h



## **DETECCIÓN Y RECONOCIMIENTO**

#### Descripción:

- Reconocimiento de objetos específicos: detección y reconocimiento de caras
- Modelos Bag of words
- Modelos discriminativos
- Modelos basados en partes

#### **Actividades vinculadas:**

1,3

**Dedicación:** 26h Grupo grande/Teoría: 8h Aprendizaje autónomo: 18h

### SEGMENTACIÓN DE VÍDEO Y SEGUIMIENTO DE OBJETOS

#### Descripción:

- Sustracción automática del fondo de la escena
- Seguimiento de objetos: Mean-shift, filtro de Kalman, filtro de partículas

#### **Actividades vinculadas:**

1,3

**Dedicación:** 13h Grupo grande/Teoría: 4h Aprendizaje autónomo: 9h

### **ACTIVIDADES**

## LABORATORIO

#### Descripción:

Se realiza en laboratorio con grupos reducidos.

#### **Objetivos específicos:**

Fomentar la capacidad del alumno para, mediante experimentos y algoritmos prácticos, entender los conceptos teóricos de la asignatura.

### Material:

Guiones de prácticas

### **Entregable:**

Memorias y resultados

Dedicación: 60h

Grupo pequeño/Laboratorio: 30h Aprendizaje autónomo: 30h



#### **EXAMEN 1**

#### Descripción:

Prueba individual en el aula sobre conceptos teóricos y resolución de problemas relacionados con los objetivos de aprendizaje de los contenidos 1 y 2.

#### **Entregable:**

Resolución de la prueba

Dedicación: 2h

Grupo grande/Teoría: 2h

#### **EXAMEN 2**

#### Descripción:

Prueba individual en el aula sobre conceptos teóricos y resolución de problemas relacionados con los objetivos de aprendizaje de los contenidos 3 y 4.

#### **Entregable:**

Resolución de la prueba

Dedicación: 2h

Grupo grande/Teoría: 2h

## SISTEMA DE CALIFICACIÓN

- Exámenes: 80% (1er examen: 40%, 2do examen: 40%)

- Laboratorio: 20%

## **BIBLIOGRAFÍA**

#### Básica:

- Szeliski, Richard. Computer vision: algorithms and applications [en línea]. London [etc.]: Springer, cop. 2011 [Consulta: 15/06/2022]. Disponible a:

https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB\_BooksVis?cod\_primaria=1000187&codigo\_libro=7058. ISBN 9781848829343.

**Fecha:** 28/07/2023 **Página:** 4 / 4