

Guía docente 320124 - IMQSA - Instrumentación y Medida de la Calidad de la Señal Audiovisual

Última modificación: 28/09/2023

Unidad responsable: Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES (Plan 2009). (Asignatura optativa).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: Manuel Lamich Arocas

Otros: Lluís Ferrer Arnau

CAPACIDADES PREVIAS

Se considera muy conveniente haber cursado y / o aprobado las asignaturas Circuitos y dispositivos electrónicos de Q2, Electrónica Analógica de Q3, Equipos de Sonido de Q5 y Equipos de Vídeo de Q6, para poder cursar la asignatura.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Transversales:

- 1. APRENDIZAJE AUTÓNOMO Nivel 3: Aplicar los conocimientos alcanzados en la realización de una tarea en función de la pertinencia y la importancia, decidiendo la manera de llevarla a cabo y el tiempo que es necesario dedicarle y seleccionando las fuentes de información más adecuadas.
- 2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA Nivel 3: Comunicarse de manera clara y eficiente en presentaciones orales y escritas adaptadas al tipo de público y a los objetivos de la comunicación utilizando las estrategias y los medios adecuados.
- 3. EMPRENDEDURÍA E INNOVACIÓN Nivel 3: Utilizar conocimientos y habilidades estratégicas para la creación y gestión de proyectos, aplicar soluciones sistémicas a problemas complejos y diseñar y gestionar la innovación en la organización.
- 4. TRABAJO EN EQUIPO Nivel 3: Dirigir y dinamizar grupos de trabajo, resolviendo posibles conflictos, valorando el trabajo hecho con las otras personas y evaluando la efectividad del equipo así como la presentación de los resultados generados.

METODOLOGÍAS DOCENTES

- Sesiones presenciales de exposición de los contenidos.
- Sesiones presenciales de laboratorio y de trabajo práctico.
- Trabajo autónomo de estudio y realización de ejercicios.
- Preparación y realización de actividades evaluables en grupo.

En las sesiones de exposición de los contenidos el profesor introducirá las bases teóricas de la materia, conceptos, métodos y resultados ilustrándolo con ejemplos convenientes para facilitar su comprensión.

Las sesiones de trabajo práctico en el aula serán de tres clases:

- a) Sesiones en las que el profesor guiará a los estudiantes en el análisis de datos y la resolución de problemas aplicando técnicas, conceptos y resultados teóricos. (80%)
- b) Sesiones de presentación de trabajos realizados en grupo por parte de los estudiantes. (8%)
- c) Sesiones de exámenes (12%)

Los estudiantes, de forma autónoma deberán estudiar para asimilar los conceptos, resolver los ejercicios propuestos.

Fecha: 30/09/2023 **Página:** 1 / 4

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo fundamental de la asignatura es introducir al alumno en las técnicas de adquisición, medida y test de señales, tanto audiovisuales como de otro tipo (peso, temperatura, ...). Al término de la asignatura el alumno debería ser capaz de diseñar y caracterizar sistemas de instrumentación tradicionales y virtuales, de resolver problemas de interferencias a los sistemas de medida y aplicar adecuadamente los test de calidad al señales de sonido.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	30,0	20.00
Horas grupo grande	30,0	20.00
Horas aprendizaje autónomo	90,0	60.00

Dedicación total: 150 h

CONTENIDOS

TEMA 1. INTRODUCCIÓN

Descripción:

- Concepto de transductor
- Especificaciones de los transductores.

Actividades vinculadas:

Descripción laboratorio:

- No dedicaremos sesión de laboratorio en este tema.

Dedicación: 6h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 4h

TEMA 2. SISTEMAS DE INSTRUMENTACIÓN

Descripción:

- Esquema de un sistema de instrumentación
- Equipos de medida e Instrumentación virtual
- Caracterización de instrumentos
- Tratamiento de errores en la medida
- Circuitos de adquisición de señal
- Tarjetas de sonido y de vídeo

Actividades vinculadas:

Descripción laboratorio:

- Medida de la respuesta frecuencial, linealidad y distorsión armónica de un prototipo de sonómetro.

Dedicación: 17h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 9h

TEMA 3. MEDIDA DE VARIABLES FÍSICAS

Descripción:

- Sistema de medida de peso
- Sistema de medida de temperatura
- Sistema de medida de corriente eléctrica

Actividades vinculadas:

Descripción laboratorio:

- No dedicaremos sesión de laboratorio en este tema.

Dedicación: 20h Grupo grande/Teoría: 8h Aprendizaje autónomo: 12h

TEMA 4. CARACTERIZACIÓN AUTOMÁTICA DE EQUIPOS

Descripción:

- Instrumentación virtual.
- LABVIEW

Actividades vinculadas:

Descripción laboratorio:

- Se realizará un tutorial del programa de comunicación con instrumentos LABVIEW.
- Diseño y programación de un sonómetro VIRTUAL

Dedicación: 39h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 16h Aprendizaje autónomo: 21h

TEMA 5. INTERFERENCIAS A LOS SISTEMAS AUDIOVISUALES

Descripción:

- Introducción. Mecanismos de generación y acoplamientos de interferencias electromagnéticas (EMI).
- Tipos de acoplamientos de EMI en sistemas audiovisuales.
- Soluciones típicas para la reducción de EMI.
- Normativa de Compatibilidad Electromagnética (EMC).

Actividades vinculadas:

Descripción laboratorio:

- Medidas de EMI.
- Aplicación de técnicas de reducción de EMI

Dedicación: 40h

Grupo grande/Teoría: 10h Aprendizaje autónomo: 24h Aprendizaje autónomo: 6h

Fecha: 30/09/2023 **Página:** 3 / 4

TEMA 6. SMART SENSORES

Descripción:

- Tipos de sensores

- Redes de comunicación

- Aplicaciones audiovisuales: Cámaras IP

Actividades vinculadas:

Descripción laboratorio:

- Aplicación de un "Smart Sensor" para la medida

Dedicación: 20h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 12h

SISTEMA DE CALIFICACIÓN

- 1er examen, peso: 25% - 2 º examen, peso: 25%

- Prácticas de laboratorio y Trabajos presentados: 50%

BIBLIOGRAFÍA

Básica:

- Pérez García, M. A. [et al.]. Instrumentación electrónica. 2ª ed. Madrid: Thomson, 2004. ISBN 84-9732-166-9.
- Pallás Areny, R. Adquisición y distribución de señales. Barcelona: Marcombo, 1993. ISBN 8426709184.

Complementaria:

- Meijer, Gerard C. M. Smart sensor systems. Chichester: John Wiley & Sons, 2008. ISBN 9780470866917.

Fecha: 30/09/2023 Página: 4 / 4