

Guía docente 340108 - MAE2-E5009 - Máquinas Eléctricas II

Última modificación: 17/05/2023

Unidad responsable: Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú

Unidad que imparte: 709 - DEE - Departamento de Ingeniería Eléctrica.

Titulación: GRADO EN INGENIERÍA ELÉCTRICA (Plan 2009). (Asignatura obligatoria).

GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA (Plan 2009). (Asignatura optativa).

GRADO EN INGENIERÍA MECÁNICA (Plan 2009). (Asignatura optativa).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Catalán

PROFESORADO

Profesorado responsable: MARCEL TORRENT BURGUES

Otros:

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

1. CE19. Capacidad para el cálculo y diseño de máquinas eléctricas

Transversales:

- 2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA Nivel 3: Comunicarse de manera clara y eficiente en presentaciones orales y escritas adaptadas al tipo de público y a los objetivos de la comunicación utilizando las estrategias y los medios adecuados.
- 3. SOSTENIBILIDAD Y COMPROMISO SOCIAL Nivel 3: Tener en cuenta las dimensiones social, económica y ambiental al aplicar soluciones y llevar a cabo proyectos coherentes con el desarrollo humano y la sostenibilidad.

METODOLOGÍAS DOCENTES

- En las clases de teoría, se expondrán y desarrollarán los fundamentos teóricos de las materias programadas. Consistirán en explicaciones teóricas complementadas con actividades destinadas a estimular la participación, la discusión y el análisis crítico por parte de los estudiantes.
- En las clases de problemas se plantearan ejercicios correspondientes a las materias tratadas. Los estudiantes deberán resolver, individualmente o en grupo, los problemas que se indiquen.
- En las prácticas de laboratorio los estudiantes realizarán las prácticas programadas y libraran el correspondiente informe de la actividad juntamente con los cálculos y consideraciones críticas pertinentes.
- Se realizará un trabajo en grupo durante el curso relacionado con algún tema específico de la asignatura.

Fecha: 27/03/2024 Página: 1 / 5

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- Presentar las aplicaciones principales de la máquina asíncrona como motor y como generador.
- Estudiar las peculiaridades constructivas de la máquina asíncrona y su principio de funcionamiento.
- Analizar el comportamiento de la máquina asíncrona en régimen permanente utilizando su circuito equivalente.
- Presentar las aplicaciones principales de la máquina de corriente continua como motor y como generador.
- Estudiar las peculiaridades constructivas de la máquina de corriente continua y su principio de funcionamiento.
- Analizar el comportamiento de la máquina de corriente continua en régimen permanente utilizando su circuito equivalente.
- Realizar los ensayos necesarios en una máquina asíncrona para la determinación de su circuito equivalente, así como realizar el ensayo directo en carga.
- Realizar los ensayos necesarios en una máquina de corriente continua para la determinación de las curvas características de funcionamiento.
- Presentar las aplicaciones principales de las máquinas eléctricas rotativas no convencionales: motor paso a paso, Brushless y SRM.
- Identificar las diferentes partes constitutivas y el principio de funcionamiento de las máquinas eléctricas rotativas no convencionales: motor paso a paso, Brushless y SRM.
- Utilizar los principios básicos de dimensionamiento para calcular máquinas y dispositivos eléctricos, así como utilizar software específico para su diseño.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	15,0	10.00
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	45,0	30.00

Dedicación total: 150 h

Fecha: 27/03/2024 **Página:** 2 / 5

CONTENIDOS

(CAST) 1 - Máquinas eléctricas asíncronas

Descripción:

(CAST) 1.1.- Generalitats. Formes constructives. Principi de funcionament.

- 1.2.- Circuit equivalent. Determinació dels paràmetres del circuit equivalent.
- 1.3.- Balanç de potències. Corbes característiques de funcionament.
- 1.4.- Engegada del motor d'inducció.
- 1.5.- La màquina d'inducció funcionant com a generador.
- 1.6.- Motors monofàsics d'inducció.

Objetivos específicos:

(CAST) - Identificar les diferents parts constitutives de la màquina asíncrona.

- Interpretar el principi de funcionament de la màquina asíncrona.
- Determinar el circuit equivalent de la màquina asíncrona i analitzar el seu funcionament en règim permanent.
- Analitzar les corbes característiques que identifiquen comportament del motor d'inducció.
- Descriure quins mètodes es poden utilitzar per efectuar l'engegada del motor d'inducció.
- Reconèixer la possibilitat d'utilitzar la màquina asíncrona com a generador.
- Identificar els diferents tipus de motors d'inducció monofàsics.

Actividades vinculadas:

(CAST) Sessions teòriques 1-2-3-4-5. Sessions de problemes 1-2-3. Pràctiques de laboratori 1-2-3. Activitat dirigida 1.

Dedicación: 58h 30m Grupo grande/Teoría: 16h Grupo pequeño/Laboratorio: 5h Actividades dirigidas: 7h 30m Aprendizaje autónomo: 30h

Fecha: 27/03/2024 **Página:** 3 / 5

(CAST) 2 - Máquinas eléctricas de corriente continua

Descripción:

(CAST) 2.1.- Generalitats. Formes constructives. Principi de funcionament.

- 2.2.- Reacció de l'induït. La commutació.
- 2.3.- Circuit equivalent. Determinació dels paràmetres del circuit equivalent.
- 2.4.- Balanç de potències. Corbes característiques de funcionament.
- 2.5.- Engegada dels motors de corrent continu.
- 2.6.- La màquina de corrent continu com a generador.
- 2.7.- El motor universal.

Objetivos específicos:

(CAST) - Identificar les diferents parts constitutives de la màquina de corrent continu.

- Interpretar el principi de funcionament de la màquina de corrent continu.
- Determinar el circuit equivalent de la màquina de corrent continu i analitzar el seu funcionament en règim permanent.
- Analitzar les corbes característiques que identifiquen el comportament del motor de corrent continu.
- Descriure quins mètodes es poden utilitzar per efectuar l'engegada del motor de corrent continu.

Actividades vinculadas:

(CAST) Sessions teòriques 6-7-8-9.

Sessions de problemes 4-5.

Pràctiques de laboratori 1-4-5.

Activitat dirigida 2.

Dedicación: 41h

Grupo grande/Teoría: 12h Grupo pequeño/Laboratorio: 5h Actividades dirigidas: 4h Aprendizaje autónomo: 20h

(CAST) 3 - Máquinas eléctricas no convencionales

Descripción:

(CAST) 3.1.- El motor pas a pas.

3.2.- El motor de corrent continu sense escombretes (Brushless).

3.3.- El motor de reluctància autocommutat (SRM).

Objetivos específicos:

(CAST) - Identificar les diferents parts constitutives de les màquines elèctriques no convencionals (Motor pas a pas, Brushless, SRM).

- Interpretar el principi de funcionament de les màquines elèctriques no convencionals (Motor pas a pas, Brushless, SRM).

Actividades vinculadas:

(CAST) Sessions teòriques 10-11-12.

Sessió de problemes 6.

Pràctica de laboratori 6.

Dedicación: 31h

Grupo grande/Teoría: 8h Grupo pequeño/Laboratorio: 2h Actividades dirigidas: 1h Aprendizaje autónomo: 20h

Fecha: 27/03/2024 **Página:** 4 / 5

(CAST) 4 - Fundamentos de cálculo de máquinas eléctricas

Descripción:

(CAST) 4.1.- Principis bàsics de dimensionament de les màquines elèctriques.

4.2.- Càlcul paramètric.

4.3.- Introducció al càlcul assistit per ordinador.

Objetivos específicos:

(CAST) - Identificar les variables principals i les equacions bàsiques que s'utilitzen en el dimensionament de màquines i dispositius elèctrics.

- Utilitzar software específic per al dimensionament i anàlisis de màquines elèctriques.

Actividades vinculadas:

(CAST) Sessions teòriques 13-14. Sessió de problemes 7. Activitat dirigida 2.

Dedicación: 19h 30m Grupo grande/Teoría: 6h Actividades dirigidas: 3h 30m Aprendizaje autónomo: 10h

SISTEMA DE CALIFICACIÓN

- Exámenes a realizar durante el curso (65%).
- Realización de problemas y trabajos, en grupo o individualmente (15%).
- Realización de prácticas de laboratorio (20%).

Reevaluación: se realizará prueba de reevaluación de la parte correspondiente a los exámenes, según los criterios de reevaluación fijados en la normativa de a ?EPSEVG.

BIBLIOGRAFÍA

Básica:

- Chapman, Stephen J. Máquinas eléctricas [en línea]. 5a ed. México DF [etc.]: McGraw-Hill, 2012 [Consulta: 19/02/2024]. Disponible a: https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=4297. ISBN 9786071507242.
- Sanz Feito, Javier. Máquinas eléctricas. Madrid [etc.]: Prentice Hall, 2002. ISBN 8420533912.
- Fitzgerald, A. E.; Kingsley, Charles; Umans, Stephen D. Máquinas eléctricas. 6a ed. México [etc.]: McGraw-Hill, 2004. ISBN 970104052X.
- Umans, Stephen D. Fitzgerald & Kingsley's Electric machinery. 7th ed. Boston [etc.]: McGraw-Hill, 2014. ISBN 9780071326469.

Complementaria:

- Fraile Mora, Jesús. Máquinas eléctricas. 8a ed. Madrid: Ibergarceta, 2016. ISBN 9788416228669.
- Fraile Mora, Jesús; Fraile Ardanuy, Jesús. Problemas de máquinas eléctricas [en línea]. 2a ed. Madrid: Ibergarceta, 2015 [Consulta: 18/03/2024]. Disponible a:

https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB_BooksVis?cod_primaria=1000187&codigo_libro=4075. ISBN 9788416228140.

Fecha: 27/03/2024 **Página:** 5 / 5