Course guide

200232 - CITG - Combinatorics and Graph Theory

Unit in charge:
Teaching unit:
Degree:
Academic year: 2023
School of Mathematics and Statistics
749 - MAT - Department of Mathematics.
BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Optional subject).
ECTS Credits: 6.0
Languages: English

LECTURER

Coordinating lecturer:

Others:

MARCOS NOY SERRANO

Primer quadrimestre:
MARCOS NOY SERRANO - M-A
CLÉMENT REQUiLÉ - M-A
LLUIS VENA CROS - M-A

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

3. CE-2. Solve problems in Mathematics, through basic calculation skills, taking in account tools availability and the constraints of time and resources.
4. CE-4. Have the ability to use computational tools as an aid to mathematical processes.
5. Ability to solve problems from academic, technical, financial and social fields through mathematical methods.

Generical:

1. CB-4. Have the ability to communicate their conclusions, and the knowledge and rationale underpinning these to specialist and non-specialist audiences clearly and unambiguously.
2. To have developed those learning skills necessary to undertake further interdisciplinary studies with a high degree of autonomy in scientific disciplines in which Mathematics have a significant role.
3. CG-1. Show knowledge and proficiency in the use of mathematical language.
4. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
5. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in different contexts.
6. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
7. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:

11. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thoughtbuilding and decision-making. Taking part in debates about issues related to the own field of specialization.
12. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

TEACHING METHODOLOGY

(Section not available)

LEARNING OBJECTIVES OF THE SUBJECT

[^0]STUDY LOAD

Type	Hours	Percentage
Hours small group	30,0	20.00
Hours large group	30,0	20.00
Self study	90,0	60.00

Total learning time: 150 h

CONTENTS

1. The symbolic method

Full-or-part-time: 25h
Theory classes: 5h
Laboratory classes: 5h
Self study : 15h

2. Enumeration with symmetries

Full-or-part-time: 15 h
Theory classes: 3h
Laboratory classes: 3h
Self study : 9h

3. Finite geometry

Full-or-part-time: 30h
Theory classes: 6h Laboratory classes: 6h
Self study : 18h

4. Graph connectivity

Full-or-part-time: 20h
Theory classes: 4h
Laboratory classes: 4h
Self study : 12h

5. Matching

Full-or-part-time: 20h

Theory classes: 4h
Laboratory classes: 4h
Self study : 12h

6. Graph coloring

Full-or-part-time: 20h
Theory classes: 4h
Laboratory classes: 4h
Self study : 12 h

7. Extremal graph theory

Full-or-part-time: 20h
Theory classes: 4h
Laboratory classes: 4h
Self study : 12 h

GRADING SYSTEM

- Midterm exam (contents 1, 2 and 3) (P)
- Final exam (either contents 4, 5, 6 and 7, or all the contents) (F)
- Final score: Max $\{(P+F) / 2, F\}$

BIBLIOGRAPHY

Basic:

- West, Douglas Brent. Introduction to graph theory. 2nd ed. Upper Saddle River, NJ: Prentice Hall, cop. 2001. ISBN 0130144002.
- Diestel, Reinhard. Graph theory. 3rd ed. Berlin [etc.]: Springer, 2005. ISBN 3540261826.
- Flajolet, Philippe; Sedgewick, Robert. Analytic combinatorics [on line]. Cambridge: Cambridge University Press, 2009 [Consultation: 27/06/2023].
Available
on :
https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo\&docID=4127 37. ISBN 9780521898065.
- Cameron, Peter J. (Peter Jephson). Combinatorics : topics, techniques, algorithms. Cambridge: Cambridge University Press, 1994. ISBN 0521457610.

Complementary:

- Bollobás, Béla. Extremal graph theory. Mineola, N.Y: Dover Publications, cop. 2004. ISBN 0486435962.
- Bondy, J. A. ; Murty U.S.R. Graph theory. New York: Springer, 2008. ISBN 9781846289699.
- Lint, Jacobus Hendricus van; Wilson R.M. A Course in combinatorics. 2nd ed. Cambridge: Cambridge University Press, 2001. ISBN 0521803403.
- Lovász, László. Combinatorial problems and exercises. 2nd ed. Providence: AMS Chelsea Publishing, 2007. ISBN 9780821842621.
- Wilson, Robin J. Introduction to graph theory. 5th ed. Harlow: Prentice-Hall, 2010. ISBN 9780273728894.

[^0]: (Section not available)

