

## **Course guide** 220034 - SH - Hydraulic Systems

Last modified: 02/04/2024 Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering Teaching unit: 729 - MF - Department of Fluid Mechanics. Degree: BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Compulsory subject). Academic year: 2024 ECTS Credits: 4.5 Languages: Catalan

## **LECTURER**

| Coordinating lecturer: | Salvador de las Heras            |
|------------------------|----------------------------------|
| Others:                | Hipòlit Moreno - Francisco Arias |

## REQUIREMENTS

It is considered essential to have passed the subject of Fluid Mechanics.

## **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES**

#### Specific:

CE24. Adequate and applied knowledge in engineering: aircraft systems and automatic flight control systems for aerospace vehicles. (Specific technology module: Aircraft).

## Transversal:

07 AAT N3. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

## **TEACHING METHODOLOGY**

- Lecture presenting the contents.
- Practical work.
- Independent work and study exercises.
- Preparation and assessable activities in groups.



## LEARNING OBJECTIVES OF THE SUBJECT

After completing the course, students must have achieved Level 3 (application) with general learning objectives:

Technology in the field of specialty

- $\cdot$  Understand the scientific foundations
- $\cdot$  Know how to use the technology and the necessary engineering

professional performance

- · Analyze specific situations, define problems, make decisions and implement plans of action in the search for solutions.
- $\cdot$  Apply knowledge to real situations, managing resources appropriately.
- $\cdot$  Interpret studies, reports, and analyze data numerically.
- $\cdot$  Select and manage the information sources.
- $\cdot$  Use existing tools as support.
- $\cdot$  Working in a multidisciplinary team.
- $\cdot$  Evaluate the integral, personal motivation, mobility.

communication

- $\cdot$  Understand and speak with the proper terminology.
- $\cdot$  Discuss and argue on various forums.

Technology transfer.

- $\cdot$  Analyze and evaluate the environmental, social and ethical profession.
- $\cdot$  Have a critical and innovative spirit.
- $\cdot$  Retraining in new technological developments through continuous learning.

## **STUDY LOAD**

| Туре              | Hours | Percentage |
|-------------------|-------|------------|
| Hours small group | 14,0  | 12.44      |
| Self study        | 67,5  | 60.00      |
| Hours large group | 31,0  | 27.56      |

Total learning time: 112.5 h

## CONTENTS

## Module 1: INTRODUCTION TO THE HYDRAULIC SYSTEMS

## **Description:**

- 1.1. Energy transfer systems (STE)
- 1.2. STE by fluids (STEF)
- 1.3. Fluid (types, classification, properties, etc.)
- 1.4. Pros and cons of the STEF

## **Related activities:**

- A Autotests
- C1 Controls
- E- Application Exercises
- EP1 First exam

Full-or-part-time: 18h 30m Theory classes: 6h Laboratory classes: 2h Self study : 10h 30m



## Module 2: COMPONENTS OF A STEF

## **Description:**

- 2.1. Conceptual scheme of a STEF
- 2.2. Pumps
- 2.3. Actuators: rotary and linear motors motors (cylinders)
- 2.4. Control elements (valves)
- 2.5. Fluid conditioning elements

#### **Related activities:**

A - Autotests C1 - Controls E- Application Exercises EP1 - First exam

## Full-or-part-time: 40h

Theory classes: 10h Laboratory classes: 6h Self study : 24h

## Module 4: SERVO HYDRAULIC VALVES AND DRIVE

#### **Description:**

4.1. Control Type

- 4.2. Servo and proportional valves
- 4.3. Servo valves / hydraulic cylinder
- 4.4. Applications (spoiler control, etc.)

## **Related activities:**

A - AutotestsC2 - ControlsE- Application ExercisesEP2 - Second exam

## Full-or-part-time: 38h

Theory classes: 10h Laboratory classes: 4h Self study : 24h

## Module 5: LANDING GEAR

#### **Description:**

5.1. Landing gears5.2. Hydraulic / pneumatic systems

5.3. Design criteria

## **Related activities:**

A - Autotests
C2 - Controls
E- Application Exercises
EP1 - First exam
EP2 - Second exam

**Full-or-part-time:** 16h Theory classes: 5h Laboratory classes: 2h Self study : 9h



## **ACTIVITIES**

#### T - THEORY LESSONS

**Full-or-part-time:** 44h Self study: 19h Theory classes: 25h

## **ACTIVITY 1: A - AUTOTESTS**

#### **Description:**

Evaluable autotests of 60 minutes to make as individual self-learning.

#### Specific objectives:

Acquiring the ability to know, understand and apply knowledge of the basic principles of the modules / topics, individual work and time management.

Material: Questionnaires in ATENEA

#### **Delivery:**

Activity assessable where the note is within 10% of the rating system of the subject.

**Full-or-part-time:** 18h Self study: 18h

## **ACTIVITY 2: C1 - CONTROL**

#### **Description:**

Controls multiple choice evaluable 45 minutes to hours of theory and / or Individual problems where in groups of 2 people.

#### **Specific objectives:**

Acquiring the ability to know, understand and apply knowledge of the basic principles of the modules / topics, individual or team work and time management. Upon completion of this activity, the student should be able to:

- Demonstrate the achievement of specific objectives related to the content of modules 1, 2 and 3

#### Material:

Formula sheet done by the students themselves on one side of A4 paper.

#### **Delivery:**

Activity assessable where the note is within 10% of the rating system of the subject.

# **Full-or-part-time:** 4h Self study: 3h

Theory classes: 1h



## **ACTIVITY 3: C2 - CONTROL**

#### **Description:**

Controls multiple choice evaluable 45 minutes to hours of theory and / or Individual problems where in groups of 2 people.

#### **Specific objectives:**

Acquiring the ability to know, understand and apply knowledge of the basic principles of the modules / topics, individual or team work and time management. Upon completion of this activity, the student should be able to:

- Demonstrate the achievement of specific objectives related to the content of modules 4 and 5

#### Material:

Formula sheet done by the students themselves on one side of A4 paper.

#### **Delivery:**

Activity assessable where the note is within 10% of the rating system of the subject.

## Full-or-part-time: 4h

Self study: 3h Theory classes: 1h

#### **ACTIVITY 4: E - APPLICATION EXERCISES**

#### **Description:**

Application exercises (example of application), summaries of reading articles, book chapters, book report, summary of attendance at seminars and / or conferences. proposed by the / the teacher / s.

#### Specific objectives:

Promote the implementation of the contents of the subject.

#### Material:

Collection of problems of the subject hanging in ATHENA. It can also be considered supplemental material.

#### **Delivery:**

Activity deliverable. A portion of the generated application exercises and others will be self-assessors note no note value. The part with note shall be within 10% of the rating system of the subject.

**Full-or-part-time:** 24h Self study: 10h

Laboratory classes: 14h

#### **ACTIVITY 5: EP - FIRST EXAM**

#### **Description:**

Exam to do individually.

#### Specific objectives:

Upon completion of this activity, the student should be able to:

- Demonstrate the achievement of specific objectives related to the content of modules 1, 2 and 4

#### Material:

Formula sheet used in controls.

#### **Delivery:**

The test is 30% of the final grade and will be the date, time and scheduled classroom. Deliver the final test time devoted to the activity.

Full-or-part-time: 8h 30m Self study: 6h 30m Theory classes: 2h



#### **EF - SECOND EXAM**

**Description:** Exam to do individually.

#### Specific objectives:

Upon completion of this activity, the student should be able to:

- Demonstrate the achievement of specific objectives related to the content of moduls 1, 2, 3 and 4.

#### Material:

Formula sheet used in controls.

#### **Delivery:**

The test is 30% of the final grade and will be the date, time and scheduled classroom. Deliver the final test time devoted to the activity.

**Full-or-part-time:** 10h Self study: 8h Theory classes: 2h

#### **GRADING SYSTEM**

- 1st Evaluation: midterm exam, weight: 30% (with the possibility of recovery test midterm)

- 2nd Evaluation: final exam, weight: 30%

- Controls (Type test hours of class theory and / or problems): 20%

- Autotests (type self-test individual)): 10%

- Practical exercises (proposed real applications, reading articles, chapters reading books, attending seminars and / or conferences, etc.): 10%

#### **EXAMINATION RULES.**

Individual autotests as independent learning.

Controls are multiple choice and will individually or in pairs with an approximate duration of 45 minutes. A formula sheet can be handmade form by students.

The exams consist of two exercises lasting approximately two hours.

#### BIBLIOGRAPHY

#### **Basic:**

- Cundiff, John S. Fluid power circuits and controls: fundamentals and applications [on line]. Boca Raton: CRC Press, 2002 [Consultation: 14/09/2022]. Available on:

https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=2633 26. ISBN 0849309247.

- Chapple, Peter. Principles of hydraulic system design. Oxford: Coxmoor, 2003. ISBN 1901892158.

- Ewald, R. [et al.]. The hydraulic trainer, vol. 2, Proportional and servo valve technology. Mannesmann Rexroth, 1986.

- Heras, Salvador de las. Fluidos, bombas e instalaciones hidráulicas [on line]. 2a ed. Barcelona: Iniciativa Digital Politècnica, 2018 [Consultation: 10/03/2023]. Available on: <u>http://hdl.handle.net/2117/127556</u>. ISBN 9788498807288.

#### **Complementary:**

- Tucker, Bill L. Aircraft fluid power systems. Casper, NY: Endeavor books, 1997. ISBN 9780965370653.

- Watton, John. Fundamentals of fluid power control [on line]. Cambridge: Cambridge University Press, 2009 [Consultation: 18/07/2024]. Available on:

https://www-cambridge-org.recursos.biblioteca.upc.edu/core/books/fundamentals-of-fluid-power-control/46CC3F0706DCC2FD0611A9 2D81EB7C9E. ISBN 9780521762502.

- Heras, Salvador de las; Codina, Esteve. Modelización de sistemas fluidos mediante bondgraph. Terrassa: los autores, 1997. ISBN 8460570355.



- Heras, Salvador de las. Instalaciones neumáticas. Barcelona: UOC, 2003. ISBN 9788497880022.