

Course guide 230696 - MLAB - Matlab: Fundamentals And/Or Applications

Last modified: 11/04/2025

Unit in charge: Barcelona School of Telecommunications Engineering

Teaching unit: 739 - TSC - Department of Signal Theory and Communications.

Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).

MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional

subject).

MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2022). (Optional subject).

Academic year: 2025 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: JOSE ANTONIO LAZARO VILLA

Others:

PRIOR SKILLS

Linear Algebra, Signal Processing

REQUIREMENTS

No requisit

TEACHING METHODOLOGY

Lecture notes and collection of exercises are available in pdf in the virtual campus. We use a forum for questions and answers in the virtual campus. Solutions of the proposed exercises are also available. In the first part of the course the student solves a set of proposed exercises for training. In the second part of the course the student develops and presents a final work.

LEARNING OBJECTIVES OF THE SUBJECT

Part I. Fundamentals.

The objectives are:

- 1. Present MATLAB and SIMULINK.
- 2. To get the basic knowledge necessary to work with both packages with complete autonomy.

Part II. Applications.

The objectives are:

- 1. To get more insight into MATLAB and SIMULINK, while presenting and developing more advanced applications,...
- 2. Each student will work in a subject of their own interest.

STUDY LOAD

Туре	Hours	Percentage
Self study	86,0	68.80
Hours large group	26,0	20.80
Hours small group	13,0	10.40

Total learning time: 125 h

Date: 05/12/2025 **Page:** 1 / 4

CONTENTS

(ENG) Unit 1. Matlab Fundamentals

Description:

Matlab fundamentals

Specific objectives:

Introduction to the software

Related activities:

Exercises 1

Full-or-part-time: 11h 40m Guided activities: 3h 20m Self study: 8h 20m

(ENG) Unit 2. Matlab Graphics

Description:

Using Matlab Graphics

Related activities:

Exercises 2

Full-or-part-time: 11h 40m Guided activities: 3h 20m Self study: 8h 20m

(ENG) Unit 3. M-file Programming

Description:

M-file programming

Specific objectives:

Learn how to produce scripts and functions

Related activities:

Exercises 3

Full-or-part-time: 11h 40m Guided activities: 3h 20m Self study: 8h 20m

(ENG) Unit 4. Graphics User Interface

Description:

Using GUIs

Specific objectives:

Generate GUIs with Matlab

Related activities:

Exercises 4

Full-or-part-time: 11h 40m Guided activities: 3h 20m Self study: 8h 20m

Date: 05/12/2025 **Page:** 2 / 4

(ENG) Unit 5. Simulink

Description:

Introducing Simulink and Stateflow

Specific objectives:

To simulate systems with Simulink

Related activities:

Exercises 5

Full-or-part-time: 11h 40m Guided activities: 3h 20m Self study: 8h 20m

(ENG) Unit 6. Hand-on projects with ARDUINO, RASPBERRY PI, FPGAs

Description:

Laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Specific objectives:

Learn the basics of programming with SIMULINK / MATLAB and Hardware-in-the-loop

Related activities:

Practices in the Laboratory of the Subject using ARDUINO, RASPBERRY and/or FPGAs

Full-or-part-time: 10h Practical classes: 4h Laboratory classes: 6h

(ENG) Unit 7. Advanced projects with ARDUINO, RASPBERRY PI, FPGAs

Description:

Development of your own laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Full-or-part-time: 14h Laboratory classes: 6h

Self study: 8h

Date: 05/12/2025 **Page:** 3 / 4

ACTIVITIES

Guided Laboratory Practices on examples of projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Description:

Laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Specific objectives:

Learn the basics of Hardware programming with SIMULINK and / or MATLAB

Material:

ARDUINO, RASPBERRY and FPGAs

Delivery:

Practice Report

Full-or-part-time: 10h Practical classes: 4h Laboratory classes: 6h

Develop of a Final Work

Description:

Development of your own laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Delivery:

Final Work Report Video of performance

Full-or-part-time: 14h Laboratory classes: 6h

Self study: 8h

GRADING SYSTEM

Exercises: 30% Final work: 70%

EXAMINATION RULES.

Final work consists of

- (1) A document containing:
- (1.1) A brief theoretical introduction about the chosen subject (this can be any related to your thesis, your job, or other interests), and
- (1.2) two solved exercises about the chosen subject as well as their solution steps and MATLAB code.
- (2) The set of MATLAB files (*.m, *.mdl,...) that solve the two proposed exercises.

(Several final works from previous courses will be available in the virtual campus in order to show the required extension and difficulty)

BIBLIOGRAPHY

Basic:

- Mathworks. Matlab toolboxes. Mathworks,
- Dormido, S. I, II, III Congreso de usuarios de MATLAB. Madrid: UNED, 1995.