

Course guide 230735 - HDD - High-Level Digital Design

Last modified: 07/05/2025

Unit in charge: Barcelona School of Telecommunications Engineering **Teaching unit:** 710 - EEL - Department of Electronic Engineering.

Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).

MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional

subject).

MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2022). (Compulsory subject).

Academic year: 2025 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: JUAN MANUEL MORENO AROSTEGUI

Others: Primer quadrimestre:

JORDI MADRENAS BOADAS - 21, 23

JUAN MANUEL MORENO AROSTEGUI - 21, 23

PRIOR SKILLS

- Digital design based on an RTL-level hardware description language (VHDL, Verilog, ...).

- Design and simulation of basic digital systems: combinational and sequential logic functions, arithmetic functions and finite state machines.
- Implementation and debugging of basic digital systems on configurable devices (FPGAs).
- Development of software applications based on microprocessor/microcontroller.
- C programming language.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

CMEE15. Analyze, design and implement hardware/software communication interfaces.

CMEE16. Specify and develop information processing systems using hardware/software co-design techniques.

CMEE17. Design and implement digital systems based on embedded systems (SOC) configurable with high-level description languages and CAE tools.

Transversal:

CTMEE3. Teamwork. Being able to work as a member of an interdisciplinary team, either as a member or carrying out management tasks, in order to contribute to developing projects with pragmatism and a sense of responsibility, assuming commitments taking into account the available resources.

TEACHING METHODOLOGY

- Lectures
- Laboratory classes
- Laboratory practical work
- Extended answer test (Midterm and final exams)

Date: 19/12/2025 **Page:** 1 / 4

LEARNING OBJECTIVES OF THE SUBJECT

Learning results of the subject:

- Understand the implications of hardware/software co-design and the use of configurable integrated systems (SOC).
- Design and implement communication interfaces between programmable subsystems (microprocessor/microcontroller) and configurable subsystems (FPGA).
- Understand the high-level design principles of digital systems based on programmable and configurable components.
- Design and implement, using high-level design languages and techniques, digital communication and information processing systems.

STUDY LOAD

Туре	Hours	Percentage
Hours small group	13,0	10.40
Hours large group	26,0	20.80
Self study	86,0	68.80

Total learning time: 125 h

CONTENTS

1. Introduction

Description:

- Motivation for high-level design
- Principles of hardware/software codesign
- High-level synthesis methodology
- High-level hardware description languages
- $\hbox{- Sustainability implications}\\$
- Industrial examples

Full-or-part-time: 4h Theory classes: 2h Self study: 2h

2. High-level hardware description languages

Description:

- Verilog hardware description language
- SystemVerilog hardware description language
- SystemC hardware description language
- Design verification based on SystemVerilog

Full-or-part-time: 18h Theory classes: 8h Self study : 10h

3. High-level digital synthesis

Description:

- Bit accurate data types
- Principles of high-level sythesis
- Scheduling
- Resource allocation
- Loop unrolling
- IO and memories

Full-or-part-time: 12h Theory classes: 6h Self study : 6h

4. Hardware/software interfaces

Description:

- Principles of hardware/software communication
- On-chip buses
- Microprocessor interfaces
- Hardware interfaces

Full-or-part-time: 8h Theory classes: 2h Self study: 6h

5. Design of custom processing systems

Description:

- Video subsystems
- Vector and matrix multiplication
- Sorting algorithms

Full-or-part-time: 24h Theory classes: 4h Self study: 20h

LABORATORY

Description:

- Design of a software application for the programmable section of a SOC
- Development of custom peripherals and interrupt management
- Introduction to the $\ensuremath{\mathsf{SystemVerilog}}$ language and to the QuestaSim simulator
- Design of an arithmetic co-processor
- Design and implementation of an AXI4 interface for the arithmetic co-processor
- Introduction to the high-level design and synthesis tool
- High-level design of a signal processing system
- Custom project

Full-or-part-time: 26h Laboratory classes: 13h Self study: 13h

ACTIVITIES

LABORATORY

Full-or-part-time: 26h Theory classes: 13h Self study: 13h

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description:

Final examination.

Full-or-part-time: 2h 30m Theory classes: 2h 30m

Midterm exam

Description:

Exam that will be carried out around the middle of the lecture period.

Full-or-part-time: 24h Theory classes: 4h Self study: 20h

GRADING SYSTEM

Midterm exam: 20% Final exam: 40%

Laboratory assessment: 40%

BIBLIOGRAPHY

Basic:

- Scaumont, Patrick R. A Practical introduction to Hardware/software Codesign [on line]. 2nd ed. New York, NY: Springer, 2014 [Consultation: 21/07/2022]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-1-4614-3737-6. ISBN 9781461437376.
- Fingeroff, M. High-level synthesis: blue book. [United States]: Xlibris Corporation, 2010. ISBN 9781450097246.
- Kastner, Ryan; Matai, Janarbek; Neuendorfer, Stephen. Parallel Programming for FPGAs [on line]. Kastner Research Group, 2018 [Consultation: 06/09/2022]. Available on: https://kastner.ucsd.edu/hlsbook/.

Complementary:

- Grötker, Thorsten; Liao, Stan; Martin, Grant; Swan, Stuart. System Design with SystemC [on line]. Boston: Kluwer Academinc Publishers, 2002 [Consultation: 06/09/2022]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/b116588. ISBN 9781402070723.
- Sutherland, Stuart; Davidmann, Simon; Flake, Peter. SystemVerilog for Design: a guide to using SystemVerilog for hardware design and modeling [on line]. 2nd ed. New York, NY: Springer, 2006 [Consultation: 06/09/2022]. Available on: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/0-387-36495-1. ISBN 0387333991.
- De Micheli, Giovanni. Synthesis and Optimization of Digital Circuits. New York: McGrawHill, 1994. ISBN 0070163332.

Date: 19/12/2025 **Page:** 4 / 4