

Course guide 240151 - 240151 - Technology and Selection of Materials

Last modified: 16/05/2023

Unit in charge: Teaching unit:	Barcelona School of Industrial Engineering 702 - CEM - Department of Materials Science and Engineering.		
Degree:	BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).		
Academic year: 2023	ECTS Credits: 4.5	Languages: Catalan, Spanish	

LECTURER

Coordinating lecturer:ANTONIO MANUEL MATEO GARCIA (Q1)ELISA RUPÉREZ (Q2)

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Knowledge of science, technology and materials' chemistry fundaments. Understanding the relation between microstructure, synthesis or processing and materials' properties.

TEACHING METHODOLOGY

During the course there are classroom and laboratory practices, together with independent learning, relating the theoretical and practical knowledges.

There are two exams

Hours: Theory: 45 h (3h/week = 2 sessions of 1.5 hour) Laboratories: 8 h (4 sessions of 2 hours, 1 session per week. Groups of up to 15 students)

LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, the student should be able to:

- Implement methodologies to select materials and forming processes for industrial applications.

- Knowing the basics of the most common processing techniques (forming, heat treatment and welding) for the different families of materials and assess their suitability depending on application.

- Knowing how processing affects the structure and properties of materials.

STUDY LOAD

Туре	Hours	Percentage
Hours large group	39,2	34.81
Hours small group	5,9	5.24
Self study	67,5	59.95

Total learning time: 112.6 h

CONTENTS

1. MATERIALS SELECTION

Description:

- Presentation of the topic, evaluation information and schedule.
- Design process
- Design methods
- Design tools
- Interactions between function, material, shape and process
- Materials properties plots
- Materials properties
- Representation of materials in Ashby plots
- Materials selection
- Strategies for selection
- Performances index
- Influence of shape on the selection

Full-or-part-time: 23h

Theory classes: 5h Laboratory classes: 6h Self study : 12h

2. RAW MATERIALS

Description:

- Steel processing:
- Blast furnace
- Oxygen steelmaking
- Electric arc furnace
- Secondary steelmaking
- Continuous casting
- Cupola
- Aluminium production:
- Bayer process
- Electrolysis
- Metallic powder production
- Powder characteristics
- Atomization
- Ceramic raw materials
- Polymer raw materials
- Synthesis of polymers: polymerization
- Additives

Full-or-part-time: 7h

Theory classes: 2h Self study : 5h

Sell Study . .

3. METAL CASTING

Description:

- Solidification
- Defects
- Moulding technology
- Types of moulds
- Filling systems and risers
- Other technologies
- Shell moulding
- Lost-wax casting
- Injection moulding
- Advantages and limitations of metal casting

Full-or-part-time: 6h

Theory classes: 2h Self study : 4h

4. PLASTIC FORMING OF METALS

Description:

- Softening mechanisms
- Static recovery and recrystallization
- Dynamic recovery and recrystallization
- Cold working versus hot working
- General classification of plastic forming processes
- Rolling
- Mills
- Problems and defects
- Forging
- Open-die versus closed-die
- Defects
- Extrusion
- Drawing
- Sheet forming
- Shearing
- Bending
- Deep drawing

Full-or-part-time: 25h 30m Theory classes: 7h 30m Laboratory classes: 1h 30m Self study : 16h 30m

5. POWDER METALLURGY

Description:

- Pressing
- Sintering
- Advantages and limitations of powder metallurgy

Full-or-part-time: 1h 30m

Theory classes: 0h 30m

Self study : 1h

6. POLYMER FORMING

Description:

- Reology
- Injection
- Injection machine, process variables, molds
- Defects in molded parts
- Morphologies induced by processing
- Advanced processing based on injection
- Extrusion
- Extruder, process parameters, nozzles
- Defects in extruded parts and morphology induced by processing
- Processing techniques based on extrusion
- Other processing techniques
- Thermoforming
- Rotational Molding
- Processes for cellular plastics (foam)
- Processing of thermosets and composites

Full-or-part-time: 16h 30m

Theory classes: 5h Laboratory classes: 1h 30m Self study : 10h

7. CERAMIC FORMING

Description:

- Glass forming
- Viscosity ¿ temperature curve
- Pressing
- Blowing
- Drawing
- Glass-ceramics
- Forming of clay products
- Pressing
- Hydroplastic forming
- Barbotine casting
- Firing
- Cement
- Tape casting

Full-or-part-time: 6h Theory classes: 2h Self study : 4h

8. HEAT TREATMENTS

Description:

- Metallurgical theory for heat treatments of steels
- General classification of heat treatments
- Isothermal transformations: TTT diagrams
- Continuous cooling transformations: CCT diagrams
- Bulk heat treatments
- Annealings: normalized, total and isothermal
- Sub-critical treatments: spherodizing, recrystallization and stress relieve
- Austempering and martempering
- Quench and temper: quenchability concept and cooling media
- Surface heat treatments
- Induction
- Flame
- Cementation
- Carbonitriding
- Nitriding
- Heat treatments of cast irons: austempering
- Heat treatments of non iron-based alloys: aging

Full-or-part-time: 20h Theory classes: 4h Laboratory classes: 6h

Self study : 10h

ACTIVITIES

(ENG) LABORATORI DE SELECCIÓ DE MATERIALS

Full-or-part-time: 14h Laboratory classes: 6h Self study: 8h

(ENG) PRÁCTICAS DE LABORATORIO DE TECNOLOGÍA DE MATERIALES

Full-or-part-time: 12h Laboratory classes: 9h Self study: 3h

(ENG) CUESTIONARIOS

Full-or-part-time: 3h Self study: 3h

GRADING SYSTEM

BIBLIOGRAPHY

Basic:

Groover, Mikell P. Fundamentos de manufactura moderna : materiales, procesos y sistemas [on line]. 3a ed. México: Prentice-Hall Hispanoamericana, 2007 [Consultation: 22/04/2020]. Available on: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=4585363. ISBN 9789701062401.
Ashby, MF; D.R.H. Jones. Engineering materials.Vol. 1 : An introduction to their properties and applications. 3rd ed. Oxford: Elsevier Butterworth-Heinemann, 2005-2006. ISBN 9780750663809.

Complementary:

- Dieter, George Ellwood. Mechanical Metallurgy. London: McGraw-Hill, 1988. ISBN 007084187X.
- Osswald, Tim A. Procesado de polímeros: Fundamentos. Cúcuta, Colombia: Guaduales, 2008. ISBN 9789584432025.

RESOURCES

Audiovisual material:

- Apuntes en PDF en Atenea elaborados por los profesores

Hyperlink:

- http://science.discovery.com/tv/how-its-made/- http://www.steeluniversity.org/