

Course guide 295301 - IGSE - Integration and Management of Energy Systems

Unit in charge: Teaching unit:	Barcelona East School of Engineering 709 - DEE - Department of Electrical Engineering.		
Degree:	BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Compulsory subject).		
Academic year: 2024	ECTS Credits: 6.0 Languages: Catalan, Spanish		
LECTURER			
Coordinating lecturer:	MARIA ELENA MARTIN CAÑADAS		
Others:	Primer quadrimestre: MARIA ELENA MARTIN CAÑADAS - Grup: M11, Grup: M12, Grup: M13		

MONTSERRAT MATA DUMENJO - Grup: M11, Grup: M12, Grup: M13

PRIOR SKILLS

Basic knowledge of storing and generating heat and power systems

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

CEENE-40. Tackle energy saving problems systematically by integrating processes and technologies.

Transversal:

05 TEQ N3. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

06 URI N3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

07 AAT N3. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

TEACHING METHODOLOGY

The teaching metodology will be project based learning.

LEARNING OBJECTIVES OF THE SUBJECT

? Review and model the main electricity and heat generation and storage integrated technologies .

? Learning systematic methods of thermal systems analysis and design of heat exchanger networks .

- ? Learning systematic analysis methods of combined thermal and electrical systems.
- ? Employ tools and systematic identification procedures of opportunities for energy savings and reuse .

Last modified: 08/08/2024

STUDY LOAD

Туре	Hours	Percentage
Self study	90,0	60.00
Hours small group	15,0	10.00
Hours large group	45,0	30.00

Total learning time: 150 h

CONTENTS

Integrated technologies.

Description:

Description and modeling of the main generation and storage technologies that will be part of the integrated energy systems .

Full-or-part-time: 3h

Theory classes: 3h

Systematic methods for the analysis of thermal systems and design of heat exchangers networks.

Description:

Exposition of methods for the analysis and design of thermal systems and heat exchangers networks .

Full-or-part-time: 14h

Theory classes: 14h

Systematic analysis methods of combined thermal and electrical systems.

Description:

Exhibition of systematic methods to perform analysis of combined systems of thermal and electric type.

Full-or-part-time: 14h

Theory classes: 14h

Distributed systems.

Description: Determination of the optimal management of distributed systems.

Full-or-part-time: 14h Theory classes: 14h

GRADING SYSTEM

The final grade will be obtained from the following equation : NF = 0.25 * 0.25 * P1 + P2 + P3 + 0.25 * 0.25 * PR

P1 , P2 , P3 : Projects 1, 2 and 3 PR : Practices

50 % of the mark of each project will result from its oral defense and the remaining 50% of the valuation of the written report. This course will not have a re-evaluation exam.

BIBLIOGRAPHY

Basic:

- Dincer, Ibrahim; Midilli, Adnan; Kucuk, Haydar. Progress in Sustainable Energy Technologies: Generating Renewable Energy [on line]. Cham: Springer International Publishing, 2014 [Consultation: 29/05/2020]. Available on: http://dx.doi.org/10.1007/978-3-319-07896-0. ISBN 9783319078960.

- Sørensen, Bent E. Renewable energy : physics, engineering, environmental impacts, economy & planning. 4th ed. Burlington, Massachusetts [etc.]: Elsevier Academic Press, cop. 2011. ISBN 9780123750259.

RESOURCES

Hyperlink:

- Revistes electròniques Elsevier, IEEE. Electronic journals Elsevier, IEEE