

# Course guide 310619 - 310619 - Global Satellite Positioning Systems

**Last modified:** 15/01/2024

Unit in charge: Barcelona School of Building Construction

**Teaching unit:** 751 - DECA - Department of Civil and Environmental Engineering.

Degree: BACHELOR'S DEGREE IN GEOINFORMATION AND GEOMATICS ENGINEERING (Syllabus 2016).

(Compulsory subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Spanish

#### **LECTURER**

**Coordinating lecturer:** Nuñez Andres, Maria Amparo

Others: Nuñez Andres, Maria Amparo

#### **PRIOR SKILLS**

Knowledge of geometric geodesy, geophysics, adjustment of observations and topographic methods.

#### **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES**

#### Specific:

- 1. (ENG) Planificació, projecte, direcció, execució i gestió de processos de mesura, sistemes d'informació, explotació d'imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.
- 2. (ENG) Reunir i interpretar informació del terreny i tota aquella relacionada geogràficament i econòmicament amb ell.
- 3. Knowledge and application of the methods and techniques of the physics ans spacial geodesy; geomagnetism; sismology and seismic engineering; gravimetry.

#### Transversal:

4. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.

#### **TEACHING METHODOLOGY**

Theoretical classes Practical classes Exams Field practices

#### **LEARNING OBJECTIVES OF THE SUBJECT**

At the end of the study of this subject, the student should be able to:

- Apply the methods and techniques of spatial geodesy.

**Date:** 16/01/2024 **Page:** 1 / 5



## **STUDY LOAD**

| Туре               | Hours | Percentage |
|--------------------|-------|------------|
| Hours large group  | 24,0  | 16.00      |
| Hours medium group | 36,0  | 24.00      |
| Self study         | 90,0  | 60.00      |

Total learning time: 150 h

## **CONTENTS**

## General structure of a GNSS system

#### **Description:**

Reference systems System architecture

**Full-or-part-time:** 6h Theory classes: 3h Self study: 3h

#### **GPS** observations

## **Description:**

Observables

Errors

DGPS

## Related activities:

Activity 1

Full-or-part-time: 10h Theory classes: 3h Practical classes: 2h Self study: 5h

## **Phase observations**

## **Description:**

Phase differential Observation equations Resolution of ambiguities

Accuracy of results

Combination of observables

## Related activities:

Acrivity 2

Full-or-part-time: 19h Theory classes: 4h Practical classes: 5h Self study: 10h

**Date:** 16/01/2024 **Page:** 2 / 5



## **Instruments and methods**

#### **Description:**

Geodetic receivers

Geodesic antennas

Observation methods

- Static
- Kinematic
- Post-Process
- RTK

## **Related activities:**

Activity 3

Full-or-part-time: 19h Theory classes: 4h Practical classes: 5h Self study: 10h

## **GPS** data processing

#### **Description:**

Data preparation Vector calculation Analysis of results Network setting

Full-or-part-time: 17h Theory classes: 4h Practical classes: 6h Self study: 7h

## **GPS** system applications

#### **Description:**

Applications

Navigation

Sensor integration

Geodesy and surveying with GPS

**Full-or-part-time:** 4h Theory classes: 2h Practical classes: 2h

## **ACTIVITIES**

## EXAM 1

**Full-or-part-time:** 12h Theory classes: 2h Self study: 10h

**Date:** 16/01/2024 **Page:** 3 / 5



#### EXAM 2

**Full-or-part-time:** 12h Theory classes: 2h Self study: 10h

#### **PRACTICE 1**

**Full-or-part-time:** 8h Practical classes: 1h Self study: 7h

## **PRACTICE 2**

## **Description:**

Field activity. Phase GPS data collection with static method vector calculation network adjustment

#### Material:

Phase GPS Receivers practice script calculation software

#### Delivery:

Practice memory

Full-or-part-time: 15h Practical classes: 6h Self study: 9h

## **PRACTICE 3**

## **Description:**

Field activity. Phase GPS data collection with kinematic method

## Material:

Phase GPS Receivers Practice script Calculation software

#### **Delivery:**

Practice memory

Full-or-part-time: 16h Practical classes: 9h Self study: 7h

#### **PRACTICE 4**

**Full-or-part-time:** 6h Practical classes: 2h Self study: 4h

**Date:** 16/01/2024 **Page:** 4 / 5



## **GRADING SYSTEM**

Continuous assessment exams 70%

Practice Report 30%

The submission of all the practices before the deadline established in Atenea is mandatory.

## **EXAMINATION RULES.**

Only those students who, having taken all the exams and submitted all the practices before the deadline, have a grade higher than 3.5, may attend the re-evaluation.

## **BIBLIOGRAPHY**

#### Basic:

- Leick, Alfred. GPS satellite surveying. 4th ed. New York: John Wiley & sons, 2015. ISBN 9781118675571.
- Seeber, Günter. Satellite geodesy. 2nd ed. Berlin, New York: Walter de Gruyter, 2003. ISBN 3110175495.

**Date:** 16/01/2024 **Page:** 5 / 5