

Course guide 320056 - EPF - Engineering of Manufacturing Processes

Last modified: 11/04/2025

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering

Teaching unit: 712 - EM - Department of Mechanical Engineering.

Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2025 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: Jordi Sans García

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

4. MEC: Applied Knowledge in systems and fabrications processes, metrology and quality control.

Transversal:

- 1. SELF-DIRECTED LEARNING Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
- 2. EFFICIENT ORAL AND WRITTEN COMMUNICATION Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.
- 3. TEAMWORK Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

TEACHING METHODOLOGY

In the theory sessions, the teacher will introduce the theoretical basis. Laboratory sessions.

Individual work and problem solving.

LEARNING OBJECTIVES OF THE SUBJECT

- \cdot Introduce concepts, techniques and methodologies in the area of manufacturing.
- · Provide an overview of the relation between design and manufacturing.
- \cdot Familiarization and use of technical language of industrial environment.

STUDY LOAD

Туре	Hours	Percentage
Hours small group	15,0	10.42
Hours large group	45,0	31.25
Self study	84,0	58.33

Total learning time: 144 h

Date: 01/07/2025 **Page:** 1 / 5

CONTENTS

TOPIC 1: Metrology and verification

Description:

- 1.1 Unit systems
- 1.2. Tolerances and adjustments
- 1.3. Surface states, roughness
- 1.4. Measuring instruments
- 1.5. Errors in the measurement

Specific objectives:

(ENG) - conèixer i utilitzar les diferents eines de medició, així com la seva particular aplicació i manipulació

Related activities:

Laboratory description: based on the practice of obtaining measurements to objects by using the tools available for this purpose.

Full-or-part-time: 18h Theory classes: 4h Practical classes: 2h Laboratory classes: 2h Self study: 10h

TOPIC 2: Machining processes

Description:

- 2.1 Machining
- 2.2 File and mechanical brushing
- 2.3 Turning
- 2.4 Drill and ream
- 2.5 Milling
- 2.6 Abrasive machining
- 2.7 Sawed and smoothed
- 2.8 Gears manufacture

Specific objectives:

(ENG) - conèixer i diferenciar les diferents màquines i complements disponibles en el taller.

- Aprendre la manera correcte d'utilització, així com les normes bàsiques de seguretat i comportament en un taller mecànic

Related activities:

Description laboratory: Step by different workstations where you can perform various tasks, such as turning operations, milling, assembly...

Full-or-part-time: 41h Theory classes: 10h Practical classes: 5h Laboratory classes: 6h Self study: 20h

Date: 01/07/2025 **Page:** 2 / 5

TOPIC 3: Joining and cutting processes

Description:

- 3.1 Resistance welding
- 3.2 Oxyacetylene welding
- 3.3 Electric arc welding
- 3.4 Flame cutting

Related activities:

Step by different workstations where you can perform welding and cutting.

Full-or-part-time: 11h Theory classes: 3h Practical classes: 1h 30m Laboratory classes: 1h 30m

Self study: 5h

TOPIC 4: Applications of investors connected to the network

Description:

4.1 EDM (Electrical Discharge Machining)

4.2 Laser

4.3 Cutting water

Full-or-part-time: 9h 30m

Theory classes: 3h Practical classes: 1h 30m

Self study : 5h

Date: 01/07/2025 **Page:** 3 / 5

TOPIC 5: Renewable Energy applications and others

Description:

- 5.1 Definition
- 5.2 Short history
- 5.3 Machines with CNC
- 5.4 CNC classifications
- 5.5 Components of machines with CNC
- 5.6 Axes and reference systems
- 5.7 Programming
- 5.8 Languages used
- 5.9 Storage of these programs
- 5.10 ISO programming language
- 5.11 Common types of functions
- 5.12 Scheduling workflows.
- 5.13 Parametric programming
- 5.14 Working in 3D
- 5.15 Use of auxiliary programs
- 5.16 CAM

Specific objectives:

(ENG)

- conèixer i aprendre a utilitzar les diferents eines de programació disponibles.
- conèixer i aprendre a utilitzar les diferents màquines de cnc disponibles

Related activities:

In the laboratory: basic problems of programming and the practical application of problems to the machine.

Full-or-part-time: 40h 30m

Theory classes: 10h Practical classes: 5h Laboratory classes: 5h 30m

Self study: 20h

GRADING SYSTEM

Written tests: there will be two written tests, each with a value of 25% of the final mark (25% + 25%)

Problem solving: 22%

Report / s of individual labs: 30%

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.

If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

BIBLIOGRAPHY

Basic

- Falk, D. [et al.]. Metalotecnia fundamental. Barcelona: Reverté, 1986. ISBN 8429160477.
- DeGarmo, E. P.; Black, J. T.; Kohser, R. A. Materiales y procesos de fabricación. 2ª ed. Barcelona: Reverté, 1994. ISBN 8429148221.
- Echepare Zugasti, R.; López de Lacalle, L. N. Control numérico: conceptos y programación. Bilbao: Ediciones Técnicas Ízaro, 1990.
- Sans García, J. Heidenhain: aplicaciones de control numérico para fresadora [on line]. Barcelona: Edicions UPC, 2008 [Consultation: 12/05/2020]. Available on: http://hdl.handle.net/2099.3/36791. ISBN 9788483017623.

Date: 01/07/2025 **Page:** 4 / 5

Complementary:

- Técnicas del taller mecánico. Barcelona: CEAC, 1977. ISBN 8432942111.
- Leyensetter, A.; Würtemberguer, G. Tecnología de los oficios metalúrgicos. Barcelona: Reverté, 1974. ISBN 8429160663.
- Lasheras, José M. Tecnología mecánica y metrotecnia. San Sebastián: Donostiarra, DL 1984. ISBN 8470630873.
- Vivancos Calvet, J. Control numèric, vol. 2, Programació. 3a ed. Barcelona: Edicions UPC, 1997. ISBN 8483012189.

Date: 01/07/2025 **Page:** 5 / 5