

Course guide 330103 - AC - Circuit Analysis

Last modified: 25/04/2024

Academic year: 2024	ECTS Credits: 6.0	Languages: Catalan	
Degree:	BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabu 2009). (Compulsory subject). BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabu 2016). (Compulsory subject).		
Teaching unit:	750 - EMIT - Department of Mining, Industrial and ICT Engineering.		
Unit in charge:	Manresa School of Engi	ineering	

LECTURER

Coordinating lecturer: JOSEP FONT TEIXIDO

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Acquire the basic concepts for the resolution of electrical and electronic circuits.

2. Design and simulate electronic circuits.

Transversal:

3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

4. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

5. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

7. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

TEACHING METHODOLOGY

- Classes with presentation by the teacher in a large group.

- Medium group directed learning classes. They consist of solving practical exercises, in which the teacher will solve doubts individually or in small groups.

- Resolution and delivery outside the classroom and worked individually or in groups, of proposed problems.

- Continuous evaluation and written tests of problems.

- All support material can be accessed via ATENEA.

LEARNING OBJECTIVES OF THE SUBJECT

Upon completion of the Circuit Analysis course, the student should be able to:

- Know, understand and use the theory and analysis methods of electrical and electronic circuits.
- Properly use component modeling and circuit simulation tools.

STUDY LOAD

Туре	Hours	Percentage
Hours large group	45,0	30.00
Hours small group	15,0	10.00
Self study	90,0	60.00

Total learning time: 150 h

CONTENTS

Content 1: FOUNDATION AND / OR REVIEW OF CONCEPTS

Description:

Voltage and intensity generators. KVL and KCL. Equivalents of Thevenin and Norton. Voltage and intensity dividers. Analysis with equivalent circuits. Generator clusters. Power and energy.

Specific objectives:

1. Establish prior knowledge.

2. Acquire mastery in specific circuit analysis techniques.

Related activities:

1, 2

Full-or-part-time: 15h Theory classes: 4h

Laboratory classes: 2h Self study : 9h

Content 2: OPERATIONAL AMPLIFIER

Description:

Description and model of the ideal operational amplifier. Inverting amplifier. Non-inverting amplifier. Tension follower. Differential amplifier. Source of intensity.

Specific objectives: 1. Knowledge of a component that allows to build and / or model active circuits.

Related activities: 1, 2

Full-or-part-time: 15h Theory classes: 4h Laboratory classes: 2h Self study : 9h

Content 3: PASSIVE REACTIVE ELEMENTS (CAPACITOR - INDUCTOR)

Description:

V-I relationships. Stored energy.

Specific objectives:

1. Define and characterize the behavior of the fundamental reactive components.

Related activities:

1,2

Full-or-part-time: 5h Theory classes: 2h Self study : 3h

Content 4: RC AND RL CIRCUITS WITH CONSTANT GENERATOR (ANALYSIS WITH DIFFERENTIAL EQUATIONS)

Description:

First order differential equation with constant coefficients and excitation. Application to RC and RL circuits.

Specific objectives: 1. Description and resolution with ODE of two basic circuits.

Related activities:

1, 2

Full-or-part-time: 15h Theory classes: 4h Laboratory classes: 2h Self study : 9h

(ENG) Contingut 5: ANÀLISI DE CIRCUITS AMB TRANSFORMADA DE LAPLACE

Description:

Laplace transformed model of the fundamental components (R, C, L). Analysis of passive and active RCL class circuits. Calculation of tensions and / or intensities. Transient and permanent responses. Free and forced responses. Transfer function. Pole-zero diagram. Stability. Impedance (admittance) in single port circuits. Ideal oscillating circuits. Oscillating circuits with damping. The transformer.

Specific objectives:

1. Analyze dynamic circuits (RLC class) with the deLaplace transform.

- 2. Characterize the behavior of the previous circuits from transfer functions.
- 3. Know the transformer.

Related activities:

1,3

Full-or-part-time: 40h

Theory classes: 12h Laboratory classes: 4h Self study : 24h

Content 6: ANALYSIS IN PERMANENT SENOIDAL REGIME

Description:

Sinusoidal generators: Permanent regime in stable circuits. Phasor of a sinusoidal variable. Phasor impedance (admittance) of the fundamental components (R, C, L). Analysis in RPS. Plan Z (Y). Phasor diagram V-I. Phasor transfer function. Relationship with the Laplace transfer function. Impedance (admittance) in single port circuits. Oscillating circuits. Analysis From the phasor point of view. The transformer in RPS.

Specific objectives:

1. Analyze the steady-state behavior of RLC class circuits when they are excited by sinusoidal generators of a single frequency.

Related activities: 1, 3

Full-or-part-time: 20h Theory classes: 6h Laboratory classes: 2h Self study : 12h

Content 7: CIRCUITS WITH PERIODIC NON-SENOIDAL GENERATORS

Description:

Fourier series of a periodic generator. Cases of interest (pulse generators, triangular generators, rectified sinusoidal generators). Response of nosenoidal periodic generators RLC class circuits.

Specific objectives:

1. Analyze the steady-state behavior of RLC class circuits when they are excited by non-sinusoidal periodic generators.

Related activities:

1,3

Full-or-part-time: 15h Theory classes: 5h

Laboratory classes: 1h Self study : 9h

Content 8: FREQUENCY RESPONSE. WEDDING DIAGRAMS.

Description:

Frequency response from the pole-zero diagram. Bode diagram (of module and phase). Gain measurement in dB (decibel). Logarithmic frequency axis (decades and octaves). Bode diagram (asymptotic and exact) of the basic terms of a transfer function. Bode diagram (asymptotic and excate) of a transfer function.

Specific objectives:

1. Justify the need to characterize the behavior of a class RLC circuit excited by generators with frequency spectrum.

Related activities: 1, 3

Full-or-part-time: 25h Theory classes: 8h Laboratory classes: 2h Self study : 15h

ACTIVITIES

ACTIVITY 1: PROBLEM SOLVING, IN A GROUP OF 2 STUDENTS

Description:

Troubleshooting each content with or without PSPICE simulation.

Specific objectives:

Fix the knowledge obtained to each content.

Material:

Statements of the problems. Educational PSPICE. Class notes. Recommended texts.

Delivery:

Report. Oral communication student / teacher (individual). It represents a part of the continuous evaluation (30%).

Full-or-part-time: 65h

Self study: 50h Laboratory classes: 15h

ACTIVITY 2: WRITTEN TEST

Description:

Individual test in the classroom related to the learning objectives of the subject contents.

Specific objectives:

Evaluate the general achievement of the objectives of contents 1, 2, 3,4.

Material:

Statement of the test delivered at the time of the test.

Delivery:

The resolved test is delivered to the teacher. Represents a part of the continuous assessment of the specific contents of the subject: 35%.

Full-or-part-time: 22h Self study: 20h Theory classes: 2h

ACTIVITY 3: WRITTEN TEST

Description:

Individual test in the classroom related to the learning objectives of the subject contents.

Specific objectives:

Evaluate the general achievement of the objectives of the contents 5,6,7,8.

Material:

Statement of the test delivered at the time of the test.

Delivery:

The resolved test is delivered to the teacher. Represents a part of the continuous assessment of the specific contents of the subject: 35%.

Full-or-part-time: 22h Self study: 20h Theory classes: 2h

GRADING SYSTEM

- Activity 1: Resolution of proposed problems: 30%

- Activity 2: Written test: 35%
- Activity 3: Written test: 35%

EXAMINATION RULES.

If any of the continuous evaluation activities is not carried out, it will be considered as not scored.

BIBLIOGRAPHY

Basic:

- Thomas, R. E.; Rosa, A. J. Circuitos y señales: una introducción a los circuitos lineales y de acoplamiento. Barcelona: Reverté, 2002. ISBN 8429134581.

Complementary:

- Irwin, J. David. Análisis básico de circuitos en ingeniería [on line]. 6ª ed. México: Limusa Wiley, 2003 [Consultation: 20/06/2024]. A vailable on:

https://search-ebscohost-com.recursos.biblioteca.upc.edu/login.aspx?direct=true&AuthType=ip,uid&db=nlebk&AN=3756176&site=eh ost-live&ebv=EB&ppid=pp_C1. ISBN 9681862953.

RESOURCES

Other resources: Circuit simulator (PSPICE).