

# Course guide 330504 - QAU - Car's Chemistry

 Last modified: 25/04/2024

 Unit in charge:
 Manresa School of Engineering

 Teaching unit:
 750 - EMIT - Department of Mining, Industrial and ICT Engineering.

 Degree:
 BACHELOR'S DEGREE IN AUTOMOTIVE ENGINEERING (Syllabus 2017). (Compulsory subject).

Academic year: 2024 ECTS Credits: 6.0 Languages: English

# LECTURER

Coordinating lecturer: Xavier de las Heras

## Others:

# **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES**

#### Specific:

CE4. Ability to understand and apply the basic knowledge principles of general chemistry, organic and inorganic chemistry and their applications in automotive engineering.

#### **Generical:**

CG10. The ability to work in a multilingual and multidisciplinary environment.

#### Transversal:

1. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

# **TEACHING METHODOLOGY**

The subject consists on 4 classroom hours, 2 devoted to explain theoretical fundamental and 2 to the solution of practical problems

# LEARNING OBJECTIVES OF THE SUBJECT

After this course, students should be able to do the following:

- Understand the concept of reaction, and calculate and apply different ways of expressing the amount of material.
- Recognise the chemical structure of the elements and chemical compounds and relate it to their properties.

- Understand the different types of chemical bonds, how molecules are formed through chemical bonding, and the properties of the molecules formed.

- Describe states of matter.
- Distinguish and analyse the main types of chemical reaction. Identify and apply the most important parameters.
- Describe, express and apply chemical equilibrium.
- Understand the basic pollutant processes in environmental chemistry.
- Use tools to seek and select information, and think about this information using their own judgement.
- Understand the impact of chemicals on the environment and sustainable development.
- Use and understand the chemical language typical of the automotive world.



# STUDY LOAD

| Туре              | Hours | Percentage |
|-------------------|-------|------------|
| Hours small group | 30,0  | 20.00      |
| Self study        | 90,0  | 60.00      |
| Hours large group | 30,0  | 20.00      |

Total learning time: 150 h

# **CONTENTS**

## **Topic 1: INTRODUCTION TO AUTOMOTIVE CHEMISTRY**

#### **Description:**

This topic deals with the following:

- Introduction to the language of chemistry in the automotive field
- Expression of concentration
- Elements, compounds and mixtures
- The chemical equation
- Combustion and fuels
- Reaction stoichiometry
- Stoichiometric calculations

#### **Related activities:**

- Lectures with active student participation (large group). Problem solving exercises in the classroom (small group).
- Problems and/or exercises (part of the assessed activity).
- Individual work (part of the assessed activity).

## Full-or-part-time: 36h

Theory classes: 8h Laboratory classes: 8h Self study : 20h

## **Topic 2: ATOMIC STRUCTURE, CHEMICAL BONDS AND STATE OF MATTER**

## **Description:**

- This topic deals with the following:
- 2.1 Atomic structure. Light and radiation.
- 2.2 The periodic table of elements and periodic properties.
- 2.3 Chemical bonds: ionic bonds, covalent bonds, metallic bonds, properties of substances and chemical bonding.
- 2.4 States of the matter: Gas, liquid & solid.

## **Related activities:**

- Lectures with active student participation (large group). Problem solving exercises in the classroom (small group).
- Problems and/or exercises (part of the assessed activity).
- Individual work (part of the assessed activity).

Full-or-part-time: 54h Theory classes: 12h Laboratory classes: 12h Self study : 30h



## **Topic 3: CHEMICAL REACTION BALANCES**

## **Description:**

3.1. Proton transfer reactions

Acid-base theories. Strength of acids and bases. The acid-base chemistry of water. The concept and calculation of acidity. Acid-base titration.

3.2. Basic concepts in electron transfer reactions. Galvanic cells. Electrolytic cells. The Nernst equation. Faraday's law.

#### **Related activities:**

- Lectures with active student participation (large group). Problem-solving exercises in the classroom (small group).
- Problems and/or exercises (part of the assessed activity).
- Individual work (part of the assessed activity).

#### Full-or-part-time: 34h

Theory classes: 7h Laboratory classes: 7h Self study : 20h

### **Topic 4: ENVIROMENTAL CHEMISTRY**

#### **Description:**

4.1 Atmospheric chemistry. Atmosphere. Composition and pollution.

#### **Related activities:**

- Lectures with active student participation (large group). Problem-solving exercises in the classroom (small group).
- Problems and/or exercises (part of the assessed activity).
- Individual work (part of the assessed activity).

## Full-or-part-time: 16h

Theory classes: 3h Laboratory classes: 3h Self study : 10h

# ACTIVITIES

## **Activity 1: Lectures**

## **Description:**

Methodology: large group The lectures include student participation. The material is divided into four thematic areas corresponding to the above topics.

#### Specific objectives:

At the end of these lectures, students should have a good grasp of the knowledge set out above in the learning objectives.

## Material:

Textbooks and complementary bibliography. Teacher notes (Atenea).

#### **Delivery:**

This activity is assessed together with the second activity through three mid-semester or final written tests, according to the EPSEM's scheduling. A continuous assessment activity will also be specified at the beginning of the academic year.

**Full-or-part-time:** 75h Theory classes: 25h Self study: 50h



## **Activity 2: Class problems**

# **Description:**

Methodology: small group.

In each area the teacher presents the students with a series of questions, exercises and problems that must be solved. In the classroom the work done by the students is checked, queries are answered, and different approaches or solutions to a problem or exercise are discussed.

#### **Specific objectives:**

At the end of these classes, students should be able to apply theoretical knowledge of the subject to practical cases. They should also be able to do the following:

- $\cdot$  Analyse the problem: understand the statement.
- $\cdot$  Develop a plan for solving the problem.
- · Solve the problem.
- $\cdot$  Check the solution: see whether it is a logical and reasonable answer.
- . Check whether units and significant numbers are correct.

#### Material:

Compulsory and recommended reading. Teacher notes (Atenea).

#### **Delivery:**

This activity is assessed together with the first by completion of three mid-semester or final written tests, according to the EPSEM's scheduling. A continuous assessment activity will also be specified at the beginning of the academic year.

## Full-or-part-time: 45h

Laboratory classes: 25h Self study: 20h

#### **Activity 3: Monographic seminars**

## **Description:**

Methodology: Small group. The student group should develop a topic, search the literature, write it up and make an oral presentation to the group.

#### **Specific objectives:**

Ability to seek information independently and communicate it with the right tools.

#### Material:

Literature found on the internet.

## Delivery:

A text and a slide show at the end of the preparation process.

## Full-or-part-time: 15h

Laboratory classes: 5h Self study: 10h



#### Activity 4: Individual continuous assessment tests

#### **Description:**

Individual tests in the classroom with some theoretical concepts and problem solving and/or issues related to the subject. There will be three tests lasting approximately 2 hours.

- Test 1. Content 1 (25%)
- Test 2. Content 2 (25%)
- Test 3. Contents 3 and 4 (20%)

## Specific objectives:

The assessment process must do the following:

- Provide indicators for monitoring the students' learning.
- Show whether students have obtained a general understanding of the content and applicability of automobile chemistry.
- Identify weaknesses to improve their learning.

#### Material:

Test papers and calculator for doing the tests.

## **Delivery:**

Completed tests. Represents 70% of the final mark for the subject.

**Full-or-part-time:** 15h Theory classes: 5h Self study: 10h

# **GRADING SYSTEM**

A) Continuous assessment 3 individuals (evaluable exercise: content 1): 23 % (evaluable exercise: content 2): 23 % (evaluable exercise: content 3 & 4): 23 % Formulation test: 8% Group's work (deliverable): 23%

B) Unique assessment Individual exam (activity assessed from 1 to 4): 100 %

The final score will be the maximum value obtained according to the system A) or B).

## **EXAMINATION RULES.**

- Class attendance

- Carrying out individual tests

## **BIBLIOGRAPHY**

# **Basic:**

Bowers, Geoffrey M.; Bowers, Ruth A. Understanding chemistry through cars [on line]. Boca Raton: Taylor & Francis, 2015 [Consultation: 18/06/2024]. Available on: https://www-taylorfrancis-com.recursos.biblioteca.upc.edu/books/mono/10.1201/b17581/understanding-chemistry-cars-geoffrey-bow ers-ruth-bowers. ISBN 9781466571839.
 Chang, Raymond; Goldsby, Kenneth A. Química [on line]. 11<sup>a</sup> ed. México: McGraw-Hill / Interamericana, 2013 [Consultation: 02/06/2022]. Available on:

https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB\_BooksVis?cod\_primaria=1000187&codigo\_libro=10619. ISBN 9786071509284.



#### **Complementary:**

- Kotz, J. C.; Treichel, P. M.; Harman, Patrick A. Química y reactividad química. 5ª ed. México: International Thomson, 2003. ISBN 9706863079.

Petrucci, Ralph H., i altres. Química general: principios y aplicaciones modernas [on line]. 10<sup>a</sup> ed. Madrid: Pearson Prentice Hall,
 2011 [Consultation: 07/06/2022]. Available on:
 <u>https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=6751</u>. ISBN 9788483226803.

- Bell, Jerry, i altres. Química: un proyecto de la American Chemical Society [on line]. Barcelona: Reverté, 2005 [Consultation: 08/06/2022]. Available on:

https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB\_BooksVis?cod\_primaria=1000187&codigo\_libro=8079. ISBN 8429170014.

# RESOURCES

## **Other resources:**

Digital teaching material, mostly in Atenea: Notes, in format Power Point Presentations; Exercse collections; Vídeos, about chemical characteristic techniques & questionaires, e.g.: UPCommons "Basic laboratory techniques", <a href="http://upcommons.upc.edu/video/handle/2009.2/1241">http://upcommons.upc.edu/video/handle/2009.2/1241</a>.

Physical room: classroom with blackboard and audiovisual support, to teach. Classrooms to work in group.

Atenció estudiant: physically in the center, in schedule and place stablished to each teacher and digital virtual support (Atenea).