

# Course guide 340128 - SIRO-K6007 - Robotic Systems

Vilenaue i le Calturi Calcal of Engineering

Last modified: 18/06/2024

| Academic year: 2024 | ECTS Credits: 6.0 Languages: Catalan, Spanish, English                                                                                                                                                                                                                                          |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Degree:             | BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Optional subject).<br>BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus<br>2009). (Compulsory subject).<br>BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Optional subject). |
| Teaching unit:      | 707 - ESAII - Department of Automatic Control.                                                                                                                                                                                                                                                  |

| LECTURER               |                   |
|------------------------|-------------------|
| Coordinating lecturer: | Luis Miguel Muñoz |
| Others:                | Luis Miguel Muñoz |

## **PRIOR SKILLS**

Units in all and a

Skills in industrial automation, process control and programming.

## REQUIREMENTS

must previous passed Q5 Industrial Automation; Industrial Informatics

# **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES**

#### Specific:

2. CE15. Basic knowledge of production and fabrication systems.

3. CE29. Ability to design automotion control systems.

# Transversal:

1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

4. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

# **TEACHING METHODOLOGY**

Master classes, active learning and participative expositive classes, projects and problems based learning, and study of real cases.

# LEARNING OBJECTIVES OF THE SUBJECT

Identify and analyze the elements of a robot, their specifications and terminology.

Describe and analyze the models of a robot.

Describe the robot control techniques.

Know the robot programming techniques.

Know the criteria, methodology and standards about the implantation of robots, evaluating their integration capability in a social or industrial environment.



# **STUDY LOAD**

| Туре              | Hours | Percentage |
|-------------------|-------|------------|
| Hours large group | 30,0  | 20.00      |
| Self study        | 90,0  | 60.00      |
| Hours small group | 30,0  | 20.00      |

Total learning time: 150 h

# CONTENTS

# (ENG) 1 Background Description:

Definition Classification Briev history Robots morphology Joints Industrial applications

#### Specific objectives:

Locate the robot in the industrial domain amb pay attention to collaborative tasks with humans. Knpw the differents parts that the robot is composed.

# Related activities:

PR1

# Full-or-part-time: 6h

Theory classes: 6h

## (ENG) -2 Geometrics, Kinematics and dynamics

**Description:** Positiona and orientation representation Kinematic modelling Dynamic modelling

Specific objectives: Learn geometry, kinematics and dynamic aspects to understand the robot control movement of the next chapter

Related activities: PR2

#### Full-or-part-time: 18h Theory classes: 18h



#### (ENG) -3 Control and robots programming

**Description:** Path generation Gestual and Textrual programming 3D programming

**Specific objectives:** Learn some aspects of dynamic control and programming in order to prepare robotic tasks

Related activities: PR1, PR2, PR3

**Full-or-part-time:** 6h Theory classes: 6h

(ENG) -4 Mobile Robotics

**Description:** Introduction to mobile robotics Planning

**Specific objectives:** Know the science of the wheeled mobile robots Know the planning techniques

Related activities: PR4

Full-or-part-time: 4h Theory classes: 4h

#### (ENG) PR1 Industrial robots programming

**Description:** Introduction to programming robot system Programming tools Edition and programming Examples Porfolio

**Specific objectives:** Learn the basic intructions for the programming of robotic tasks

**Full-or-part-time:** 4h Theory classes: 4h



#### (ENG) PR2 Robots: Modeling and simulation

#### **Description:**

Introduction to the robotics toolbox Matlab Study of the Spacial transformations Study of the kinematic model

#### Specific objectives:

Learn to use the mathematic tools in order to analyze the science behind robots

#### Full-or-part-time: 8h Theory classes: 8h

#### (ENG) PR3 Programming robots tools

#### **Description:**

Introduction to programming and simulations robots Programming a robotized task Programming a robotized system

**Specific objectives:** Know advanced tools for program and simulate industrial robots

**Full-or-part-time:** 2h Theory classes: 2h

#### (ENG) PR4 Mobile robots

**Description:** Programming wheeled mobile robots

**Specific objectives:** Learn to solve mobile robot tasks using the acquired theoretical knowledge

Full-or-part-time: 2h Theory classes: 2h

#### **PR5** Miniproject

**Description:** Conducting a group project

**Full-or-part-time:** 10h Theory classes: 10h



# **GRADING SYSTEM**

In general:

Individual tests in the middle and final of the course (60%) Team work (40%)

Optionally:

Presentations in group about a theme or project related to robotics

Others:

The re-evaluation of the subject can be done by all students who have a total rating between 2 and 4.9 and the final mark will be a maximum of 7 for the students who have to do it. The part corresponding to the theory exams will be reassessed.

# **BIBLIOGRAPHY**

#### **Basic:**

 - Reyes Cortés, Fernado. Robótica : control de robots manipuladores [on line]. Barcelona : México: Marcombo : Alfaomega, 2011
 [ Consultation: 16/11/2022]. Available on: https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=nlebk&AN=2749643&site=ehost-live&ebv=EB&ppid=pp
 C. ISBN 9788426717450.

- Corke, Peter I. Robotics, vision and control : fundamental algorithms in MATLAB® [on line]. 2nd ed. Cham, Switzerland: Springer, 2017 [Consultation: 22/04/2022]. Available on: <u>https://link.springer.com/book/10.1007/978-3-319-54413-7</u>. ISBN 9783319544120.

#### **Complementary:**

- Libro blanco de la robótica : de la investigación al desarrollo tecnológico y futuras aplicaciones. Madrid: Comité Español de Automática : Ministerio de Educación y Ciencia, 2007. ISBN 9788469038840.

- Gómez de Gabriel, Jesús Manuel; Ollero Baturone, Aníbal; García Cerezo, Alfonso José. Teleoperación y telerrobótica. Madrid [etc.]: Pearson Education, 2006. ISBN 9788483222966.

- Craig, John J. Robótica [on line]. 3a ed. México [etc.]: Pearson Educacion, 2006 [Consultation: 16/02/2024]. Available on: <a href="https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB\_BooksVis?cod">https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB\_BooksVis?cod</a> primaria=1000187&codigo libro=3184. ISBN 9702607728.