

Course guide 390103 - FF1 - Physics I

Last modified: 21/06/2024

Academic year: 2024	ECTS Credits: 6.0 Languages: Catalan
Degree:	BACHELOR'S DEGREE IN BIOSYSTEMS ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN FOOD ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN AGRONOMIC SCIENCE ENGINEERING (Syllabus 2018). (Compulsory subject).
Unit in charge: Teaching unit:	Barcelona School of Agri-Food and Biosystems Engineering 748 - FIS - Department of Physics.

Develope Calcul of April Food and Discustomer Fragmentin

LECTURER

Units in all and a

Coordinating lecturer:	Prats Soler, Clara
Others:	Alvarez Lacalle, Enrique Rubio Maturana, Carles Prat Pou, Arnau Mazon Bueso, Jordi Ye, Qiaoling Perramon Malavez, Aida

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

2. Knowledge of the basic concepts of mechanics, thermodynamics, electromagnetic fields and waves, and ability to apply them in engineering problems.

Generical:

1. Ability to solve problems.

TEACHING METHODOLOGY

The theory classes will consist of an introduction of the concepts required to achieve the course objectives. This will be done by the lecturer that will also show the use of these concepts on problems solving. The practical classes will be divided into problems sessions and laboratory practices. These sessions will be guided by the lecturer, and the students will work in groups. The teamwork capacity of students will be fostered, as well as their problem solving capacity. The support materials include some notes of the course and problems lists. These materials will be available at ATENEA.

LEARNING OBJECTIVES OF THE SUBJECT

Students will discover the importance of physics to understand the living systems. Through this course it is intended that students achieve the knowledge of mechanics, fluid mechanics, thermodynamics and waves needed for understanding the behavior of biological systems. The students should be able to solve problems and answer questions related to all these topics, as well as to apply this knowledge in the following subjects of the degree. The students must also attain an overview of science and the scientific method, they must be able to apply the dimensional analysis to solving problems and checking the results and they must acquire expertise in the diverse calculation techniques introduced in the subject.

STUDY LOAD

Туре	Hours	Percentage
Self study	90,0	60.00
Hours large group	40,0	26.67
Hours small group	20,0	13.33

Total learning time: 150 h

CONTENTS

Introduction to Biophysics

Description:

1.1 What is Biophysics?

1.2 Subject program

1.3 Method of learning

1.4 Review of elementary fundamentals of mathematics and physics

Related activities: Theory lessons Exercices and questions homework

Full-or-part-time: 3h Theory classes: 1h Self study : 2h

Materials properties

Description:

2.1 Materials properties2.2 Biological materials and biomaterials

Related activities:

Theory lessons Problems solving lesson Practical session of exercices and questions

Full-or-part-time: 13h

Theory classes: 3h Laboratory classes: 2h Self study : 8h

Fluid statics

Description:

3.1 Density, pressure, the effect of gravity3.2 Pascal's Law. Archimedes Principle3.3 The air bladder of fishes

3.4 Surface tension. Alveoli. Cell membrane

Related activities:

Theory lessons Practical session of exercices and questions

Full-or-part-time: 14h Theory classes: 4h Laboratory classes: 2h Self study : 8h

Fluid dynamics

Description:

- 4.1 Continuity equation
- 4.2 Bronchial system. Circulatory system
- 4.3 Bernoulli's equation
- 4.4 Viscosity. Poiseuille's Law
- 4.5 Bernoulli's equation in real fluids. Reynolds number. Turbulent regime
- 4.6 Distribution of pressure in the circulatory system

Related activities:

Theory lessons Theory online lessons Problems solving lesson Practical session of exercices and questions

Full-or-part-time: 19h Theory classes: 6h Laboratory classes: 2h Self study : 11h

Introduction to thermodynamics

Description:

- 5.1 What is thermodynamics?
- 5.2 Temperature and the zeroth law of thermodynamics
- 5.3 Microscopic interpretation of temperature. Heat capacity. Physical effects of temperature
- 5.4 Properties of pure substances. Phase changes
- 5.5 Humidity
- 5.6 Biological effects of temperature

Related activities:

Theory lessons Problems solving lessons Practical session of exercises and questions

Full-or-part-time: 15h

Theory classes: 5h Laboratory classes: 2h Self study : 8h

Energy and First law of thermodynamics

Description:

6.1 First law of thermodynamics6.2 Heat and mechanical work in an ideal gas6.3 Carnot cycle. Biological systems as a heat engine6.4 First law and metabolism

Related activities:

Theory lessons Online theory lesson Practical session of exercises and questions

Full-or-part-time: 15h

Theory classes: 4h Laboratory classes: 2h Self study : 9h

Information theory and Second law of thermodynamics

Description:

7.1 Information theory. Second law of thermodynamics

7.2 Biodiversity. Ecological succession

7.3 Second law and energy. Energy in ecological systems. Human ecosystems

Full-or-part-time: 12h Theory classes: 3h Laboratory classes: 2h Self study : 7h

Heat transfer

Description:

8.1 Conduction and convection

- 8.2 Electromagnetic radiation. Thermal radiation
- 8.3 Temperature control in living organisms

Related activities:

Theory lessons Problems solving lesson Practical session of exercises and questions

Full-or-part-time: 14h Theory classes: 4h Laboratory classes: 2h Self study : 8h

Introduction to the thermodynamics of irreversible processes

Description:

9.1 Transport phenomena

9.2 Osmotic flux

9.3 Gibbs free energy. Chemical potential

9.4 Xylem. Starling mechanism. Cell membrane

Related activities:

Theory lessons Practical session of exercices and questions Exercises and questions homework

Full-or-part-time: 16h Theory classes: 4h Laboratory classes: 2h Self study : 10h

ACTIVITIES

Theory lessons

Full-or-part-time: 34h Theory classes: 34h

Problems solving sessions

Full-or-part-time: 6h Theory classes: 6h

Practical sessions of exercises and questions

Full-or-part-time: 20h Laboratory classes: 20h

Online theory lessons

Full-or-part-time: 5h Self study: 5h

Exercises and questions homework

Full-or-part-time: 8h Self study: 8h

Autonomous learning

Full-or-part-time: 77h Self study: 77h

GRADING SYSTEM

There are two written tests N1 and N2, in the middle and end of the semester. If the subject is suspended and the final grade is higher than Not Presented, the N1 and N2 written tests can be reassessed in the extraordinary period of reassessment exams. Students who have already passed or those classified as not presented will not be able to take part in the re-evaluation of a subject. These tests will count for 80% of the final grade of the subject (40% each). The remaining 20%, corresponding to N3, will correspond to continuous assessment through deliverables.

Nfinal = 0.40 N1 +0.40 N2 +0.20 N3

BIBLIOGRAPHY

Basic:

- Tipler, Paul Allen; Mosca, Gene. Física para la ciencia y la tecnología [on line]. 5a ed. Barcelona [etc.]: Reverté, 2005 [Consultation: 26/07/2022]. A vailable on:

https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB_BooksVis?cod_primaria=1000187&codigo_libro=10372. ISBN 8429144102.

- Villar, Raúl; López, Cayetano; Cussó Pérez, Fernando. Fundamentos físicos de los procesos biológicos [on line]. San Vicente [del Raspeig], Alicante: Club Universitario, 2012 [Consultation: 22/11/2023]. Available on: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=3216 262. ISBN 9788499485096.

- Guyton, Arthur C. Fisiologia humana. [6ª ed.]. México, D.F. [etc.]: Nueva Editorial Interamericana, 1987. ISBN 9682510163.

- Solomon, Eldra Pearl; Berg, Linda R; Martin, Diana W. Biología. Novena edición. México: Cengage Learning Editores, 2013. ISBN 9786074819335.

- Solomon, Eldra Pearl; Berg, Linda R.; Martin, Diana W. Biología. Novena edición. México: Cengage Learning Editores, 2013. ISBN 9786074819335.