



## Course guide

# 390439 - SDM - Sensors and Digital Mapping in Agriculture and Environmental Sciences

Last modified: 20/01/2026

**Unit in charge:** Barcelona School of Agri-Food and Biosystems Engineering  
**Teaching unit:** 745 - DEAB - Department of Agri-Food Engineering and Biotechnology.

**Degree:** BACHELOR'S DEGREE IN BIOSYSTEMS ENGINEERING (Syllabus 2009). (Optional subject).  
BACHELOR'S DEGREE IN AGRONOMIC SCIENCE ENGINEERING (Syllabus 2018). (Optional subject).

**Academic year:** 2025    **ECTS Credits:** 3.0    **Languages:** English

### LECTURER

**Coordinating lecturer:** Fran Garcia

**Others:** Lydia Serrano

### REQUIREMENTS

You will need to have taken the Geomatics course to have basic knowledge of QGIS.

### TEACHING METHODOLOGY

The learning methodology will be based on active learning where students are constantly applying the acquired knowledge, with a Project-Based Learning (PBL) approach and using real data provided by agents from the agro-industry and agro-environmental sectors.

### LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, the student will be able to:

- Select appropriate measurement and data acquisition instrumentation for the optimization of agro-environmental processes.
- Operate different sensors (soil, spectral, etc.) for soil and vegetation characterization.
- Process georeferenced data acquired in the field (point samples, remote sensing images, etc.) to generate precision cartography for management support.
- Interpret the spatial variability of acquired data and resulting maps obtained through different data interpolation techniques.
- Work in multidisciplinary teams to solve a real agronomic or environmental management use case.

### STUDY LOAD

| Type              | Hours | Percentage |
|-------------------|-------|------------|
| Self study        | 90,0  | 75.00      |
| Practical classes | 30,0  | 25.00      |

**Total learning time:** 120 h



## CONTENTS

### Fundamentals of remote sensing for plant and soil monitoring

#### Description:

In this unit we work:

- Introduction and classification of the sensors used to monitor vegetation and soil in agri-environmental applications
- The electromagnetic spectrum and the interaction of light-matter
- Optical sensors
- Electromagnetic sensors for soil monitoring and mapping
- Interpret the error introduced in the data acquired in the field

#### Related activities:

Activity 1: Theory classes

Activity 2: Field practices for taking vegetation samples with optical sensors. Comparison and interpretation of spectral signatures

#### Full-or-part-time: 18h

Theory classes: 3h

Practical classes: 5h

Self study : 10h

### Data analysis and interpolation

#### Description:

In this content we work:

- Pre-processing field data
- Exploratory analysis of geospatial data
- Introduction to different methods of data interpolation

#### Related activities:

Activity 1: Theory classes

Activity 2: Pre-processing and preparation of real data

Activity 3: Interpolation of geospatial data acquired under real conditions

#### Full-or-part-time: 34h

Theory classes: 5h

Laboratory classes: 9h

Self study : 20h

### Map and cartography generation from field data

#### Description:

In this content we work:

- Data classification systems and generation of thematic maps
- Representation of information based on maps
- Main uses of the maps generated for agricultural or environmental management

#### Related activities:

Activity 1: Theory classes

Activity 2: Resolution of use cases with real data

Activity 3: Development of the case study that will become the final work of the course (N2)

#### Full-or-part-time: 23h

Theory classes: 3h

Practical classes: 5h

Self study : 15h



## GRADING SYSTEM

---

The grade will be based on 3 grades:

- 1) The grade of the final exam
- 2) The grade of the delivery of a work (type technical report) that will be developed between the sessions in class and the autonomous work and will deal with a real case study in which the student will receive some data and will have to develop the project, the analysis and the interpretation of the results.
- 3) Attendance to the theory and practice sessions will have a weight in the final grade.

N: Final Grade

N1: Exam

N2: Final work grade

N3: Assistance

$$N=0.3*N1 + 0.6*N2 + 0.1*N3$$

## BIBLIOGRAPHY

---

### Basic:

- Oliver, Margaret A.; Webster, Richard. Basic Steps in Geostatistics: The Variogram and Kriging. 2015. ISBN 978-3-319-15864-8.
- OLIVER, M.A., WEBSTER, R.. "A tutorial guide to geostatistics: Computing and modelling variograms and kriging". Catena (Giessen), vol. 113 [on line]. pp. 56-69 Available on: 10.1016/j.catena.2013.09.006.
- Bernhardsen, T.. Geographic Information Systems. An Introduction. 3rd Edition. John Wiley & Sons, Inc., New York, 2002.

### Complementary:

- Skidmore, A. y Prins, H.. Environmental modelling with GIS and remote sensing. Taylor & Francis, Basingstoke, 2000. ISBN 9780415241700.