

Course guide 820130 - TCEE - Control Techniques

Last modified: 27/01/2025

Unit in charge: Barcelona East School of Engineering

Teaching unit: 709 - DEE - Department of Electrical Engineering.

Degree: BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2024 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: JOSE MATAS ALCALA

Others: Primer quadrimestre:

JUAN CRUZ VAQUER - Grup: T11, Grup: T12, Grup: T13 JOSE MATAS ALCALA - Grup: T11, Grup: T12, Grup: T13

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Understand automatic regulation and control techniques and their application to industrial automation.

Transversal:

4. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

TEACHING METHODOLOGY

The course uses master classes by 70%, problem analysis in a 20% and work with Matlab by 10%.

LEARNING OBJECTIVES OF THE SUBJECT

To study the control of feedback systems, while introducing input-output relationships in the electric and electromechanical systems, along with the time-domain response.

STUDY LOAD

Туре	Hours	Percentage
Hours small group	15,0	10.00
Self study	90,0	60.00
Hours large group	45,0	30.00

Total learning time: 150 h

Date: 04/02/2025 **Page:** 1 / 4

CONTENTS

Theme 1. Type of systems and modelling of systems

Description:

The most common types of physical systems are described and the principles for developing its mathematical modelling are exposed. Also, the equivalence between the different systems is explained.

Specific objectives:

The identification of physic systems

The modelling of systems

The understanding of the equivalence between systems.

Full-or-part-time: 4h 30m

Theory classes: 2h

Laboratory classes: 0h 30m

Self study: 2h

Theme 2. Feedback systems.

Description:

The concept of feedback systems is introduced, its representation, dynamical properties, stability and response to perturbations are described.

Specific objectives:

Understanding of the achievements of feedback systems Understanding the main properties of feedback systems

Full-or-part-time: 5h 40m

Theory classes: 2h Laboratory classes: 1h Self study: 2h 40m

Themes 3 to 5. Transient response of 1rst and 2nd order systems. Analysis of steady state errors.

Description:

The transient response of first and second order systems for different kind of inputs. The steady state response is also analyzed.

Specific objectives:

Understand to which parameters depend the transient response of first and second order systems. Understand le sources of error at steady state and the ways to improve it.

Full-or-part-time: 36h Theory classes: 12h Practical classes: 4h Self study: 20h

Themes 6 and 7. Root locus. Design of controllers in the LGR domain

Description:

The analysis of the evolution of the roots of a system due to feedback is carried out using the root locus method. Controllers as P, PD, PI, PID, lag and lead are designed using the root locus.

Specific objectives:

Calculate the root locus.

Design feedback controllers using the root locus.

Full-or-part-time: 28h 32m Theory classes: 3h 12m Practical classes: 2h Self study: 23h 20m

Themes 8 and 9. Bode and Nyquist diagrams

Description:

Calculate de Bode diagram and understand the stability criteria using the Nyquist diagram.

Specific objectives:

Calculate de Bode diagram.

Understand the stability criteria in the frequency domain.

Full-or-part-time: 17h Theory classes: 6h Laboratory classes: 1h Self study: 10h

Theme 10. Design in the frequency domain of compensators

Description:

The controllers P, PI, lead and lag are designed in the frequency domain

Specific objectives:

The design of feedback controllers in the frequency domain

Full-or-part-time: 34h Theory classes: 12h Laboratory classes: 2h Self study: 20h

GRADING SYSTEM

The evaluation will be conducted through the assessment by the teacher, with the following weights assigned to evaluated activities: First partial exam: 30%, Second partial exam: 30%, Third partial exam: 20%, Laboratory practice: 20%.

This subject will not have a re-evaluation exam.

It is compulsory to carry out the practices to pass the course.

EXAMINATION RULES.

The attendance to the laboratory sessions is mandatory.

Date: 04/02/2025 **Page:** 3 / 4

BIBLIOGRAPHY

Basic:

- Kuo, Benjamin C. Sistemas de control automático. México: Prentice Hall Hispanoamericana, 1996. ISBN 9688807230.
- Ogata, Katsuhiko. Ingeniería de control moderna [on line]. 5a ed. Madrid [etc.]: Pearson Educación, cop. 2010 [Consultation: 16/06/2020]. Available on: http://www.ingebook.com/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=1259. ISBN 9788483226605.
- Gomáriz, Spartacus [et al.]. Teoría de control : diseño electrónico [on line]. Barcelona: Edicions UPC, 2000 [Consultation: 16/06/2020]. Available on: http://hdl.handle.net/2099.3/36214. ISBN 8483012669.

Complementary:

- Ogata, Katsuhiko. Problemas de ingeniería de control utilizando MATLAB. Madrid: Prentice Hall Iberia, 1999. ISBN 8483220466.