

## Course guide 820156 - GEO - Wind Energy Generation

Last modified: 08/08/2024

| Unit in charge:<br>Teaching unit: | Barcelona East School of Engineering<br>709 - DEE - Department of Electrical Engineering.                                                                                                                                                                                                 |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Degree:                           | BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Optional subject).<br>BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Optional subject).<br>BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus<br>2009). (Optional subject). |  |  |
| Academic year: 2024               | ECTS Credits: 6.0 Languages: Catalan, Spanish, English                                                                                                                                                                                                                                    |  |  |
| LECTURER                          |                                                                                                                                                                                                                                                                                           |  |  |
| Coordinating lecturer:            | ÁNGEL SILOS SÁNCHEZ                                                                                                                                                                                                                                                                       |  |  |
| Others:                           | Primer quadrimestre:<br>ÁNGEL SILOS SÁNCHEZ - Grup: T11                                                                                                                                                                                                                                   |  |  |
|                                   |                                                                                                                                                                                                                                                                                           |  |  |

## **PRIOR SKILLS**

- Basic knowledge about generation and distribution of electric energy as well as applied knowledge of renewable energy.

## DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

#### Specific:

CEELE-25. Understand the applications of power electronics. CEELE-28. Understand the applications of renewable energies. CEENE-250. Knowledge of the principles of operation of electric power transmission and distribution systems.

## **TEACHING METHODOLOGY**

-In the theory classes, the theoretical foundations of programmed materials will be exposed and developed. They consist of theoretical explanations complemented by activities to encourage students' participation, discussion, and critical analysis.

-In the classes, problems will arise and solve exercises related to the matters. Students should meet individually or in groups on these problems and deliver a report at the end of the course.

-At the laboratory, students will conduct laboratory practices as required and submit the relevant report with all practices along with appropriate calculations and critical considerations at the end of the course.

-A research report about a specific topic related to the subject will be done during the course with an oral presentation.

-During the classes, a technical project will be carried out in a group to apply the exposed knowledge in the course.

## LEARNING OBJECTIVES OF THE SUBJECT

- Understand world wind generation market.
- Understand the different technologies of wind generation of electricity.
- Know how to determine the location of wind resources.
- Understand the different possibilities of control of wind turbines.
- Understand its operation in the power system.
- Know how to model, simulate the whole farm system.
- Learn to perform a pre-dimensioning of wind systems.



## **STUDY LOAD**

| Туре              | Hours | Percentage |
|-------------------|-------|------------|
| Hours small group | 15,0  | 10.00      |
| Hours large group | 45,0  | 30.00      |
| Self study        | 90,0  | 60.00      |

#### Total learning time: 150 h

## CONTENTS

#### 1. General concepts

#### **Description:**

- 1.1 Overview of wind energy conversion systems
- 1.2 Wind energy technology
- 1.3 WECS configurations
- 1.4 Grid code
- 1.5 National and international wind generation market

#### Specific objectives:

- Acquire an overview of wind power generation.

**Related activities:** 

- Related exercises and practice 1.

#### Full-or-part-time: 16h 40m

Theory classes: 3h

Laboratory classes: 2h Self study : 11h 40m

#### 2. The wind resource

#### **Description:**

- 2.1 General concepts
- 2.2 Variation in height and space
- 2.3 Variability of wind in time
- 2.4 Determination of gross energy yield
- 2.5 Assessment of resources
- 2.6 Wind measurements
- 2.7 Special offshore effects

#### Specific objectives:

- Define wind site resources taking account selected turbines.

Related activities: - Related exercises and practices 2 and 3.

## Full-or-part-time: 23h 20m

Theory classes: 3h Laboratory classes: 4h Self study : 16h 20m



#### 3. Fundamentals of wind energy conversion system control

#### **Description:**

3.1 Wind turbine aerodynamics

- 3.2 Maximum power point tracking (MPPT) control
- 3.3 Wind turbine components

#### **Specific objectives:**

- Learn about aerodynamic control of the wind turbine.

**Related activities:** - Related exercises and practices 4 and 5.

Full-or-part-time: 33h 20m Theory classes: 6h Practical classes: 4h Self study : 23h 20m

#### 4. Wind farm layout

### **Description:**

4.1 Wind farm layout design

4.2 Electrical grid collector design

- 4.3 Wind farm connected to high voltage alternative current (HVAC)
- 4.4 Wind farm connected to high voltage direct current (HVDC)

#### Specific objectives:

- Understand the different layout designs and electrical infrastructure of a wind farm.

Full-or-part-time: 10h Theory classes: 3h

# Self study : 7h

#### 5. Grid Integration

#### **Description:**

- 5.1 Power system concepts
- 5.2 Wind power variability and limited predictability
- 5.3 Grid codes for Wind Turbines
- 5.4 Grid code requirements

## Specific objectives:

- Understand network codes for wind farms.

**Full-or-part-time:** 10h Theory classes: 3h Self study : 7h



#### 6. Wind generators and modelling

#### **Description:**

6.1 Reference frame transformations

- 6.2 Induction generator models
- 6.3 Synchronous generators

#### Specific objectives:

- Understand synchronous and induction generator modeling.

**Related activities:** 

- Practice 6.

Full-or-part-time: 16h 40m

Theory classes: 3h Laboratory classes: 2h Self study : 11h 40m

#### 7. Power Converters in wind energy conversion systems

#### **Description:**

7.1 Two-level voltage source converters

7.2 Three-level neutral point clamped converters

- 7.3 Comparison 2-level and 3-level converters
- 7.4 Converter control

#### Specific objectives:

- Understand the differences between converter types.

## Full-or-part-time: 10h

Theory classes: 3h Self study : 7h

## 8. Wind Energy Conversion System Configurations

#### **Description:**

8.1 Fixed speed WECS

- 8.2 Variable speed induction generator WECS
- 8.3 Variable speed synchronous generator WECS

#### Specific objectives:

- Understand different WECS systems and analyze future trends.

**Full-or-part-time:** 10h Theory classes: 3h Self study : 7h



#### A. Annex IEC 61850

#### **Description:**

- IEC 61850. Communication and automation standard for the electrical sector.

#### Specific objectives:

- Understand scope of the IEC 61850 for the electrical sector and for the wind sector.

**Full-or-part-time:** 10h Theory classes: 3h Self study : 7h

#### **B. Other annexes**

#### **Description:**

- Wind Turbine classification
- Maintenance
- HVDC vs HVAC
- Wind farms architectures.

#### **Specific objectives:**

- Include new interesting topics proposed by students.

**Full-or-part-time:** 10h Theory classes: 3h Self study : 7h

#### **GRADING SYSTEM**

-Research report with oral presentation (25%)
-Exercise report (5%)
-Final exam (30%)
-Laboratory report (20%)
-Technical project (20%)
Note 1: It's mandatory to perform a laboratory report to pass this subject.
Note 2: It's mandatory to perform all parts of this subject to pass it.
Nota 3:There is no reassessment test.

#### **EXAMINATION RULES.**

-The written test is face-to-face and individual.

-The laboratory report is in a group, and the exercise report is individual.

-The research report with oral presentation is individual.

-The technical project is in a group.

-In exercise and laboratory reports will be assessed, where appropriate, the prior work with the presentation of results of each activity.

#### **BIBLIOGRAPHY**

#### **Basic:**

- Wu, B.. Power conversion and control of wind energy systems. Hoboken: Wiley-IEEE Press, 2011. ISBN 9780470593653.

#### **Complementary:**

- Ackerman, Thomas. Wind power in power systems [on line]. Second edition. Chichester, United Kingdom: John Wiley & Sons, 2012



[Consultation: 05/10/2020]. Available on: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119941842. ISBN 0470855088. - Burton, Tony. Wind energy handbook [on line]. 2nd ed. Chichester [etc.]: John Wiley & Sons, cop. 2011 [Consultation: 05/10/2020]. Available on: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119992714. ISBN 9781119992714.

- Freris, L. L. Renewable energy in power systems. Chichester, U.K: John Wiley & Sons, 2008. ISBN 9780470017494.

- Hau, Erich. Wind turbines : fundamentals, technologies, application and economics [on line]. 2nd ed. Berlin [etc.]: Springer, 2006 [Consultation: 27/05/2020]. Available on: <u>http://dx.doi.org/10.1007/3-540-29284-5</u>. ISBN 9783540292845.

- Heier, Siegfried. Grid integration of wind energy conversion systems. 2nd ed. Chichester [etc.]: John Wiley & Sons, cop. 2006. ISBN 0470868996.

- Lubosny, Zbigniew. Wind turbine operation in electric power systems : advanced modeling. Berlin [etc.]: Springer, 2003. ISBN 354040340X.

- Stiebler, Manfred. Wind energy systems for electric power generation [on line]. Berlin: Springer, cop. 2008 [Consultation: 27/05/2020]. Available on: <u>http://dx.doi.org/10.1007/978-3-540-68765-8</u>. ISBN 9783540687658.

- Teodorescu, Remus. Grid converters for photovoltaic and wind power systems [on line]. Chichester, West Sussex: John Wiley & Sons, 2011 [Consultation: 27/05/2020]. Available on: <u>https://onlinelibrary.wiley.com/doi/book/10.1002/9780470667057</u>. ISBN 9780470057513.

## RESOURCES

#### **Other resources:**

- Papers, documentation and web pages of interest which will be delivered during the course.