

Guía docente 200617 - PE - Programación Estocástica

Última modificación: 01/06/2023

Unidad responsable: Facultad de Matemáticas y Estadística

Unidad que imparte: 715 - EIO - Departamento de Estadística e Investigación Operativa.

Titulación: MÁSTER UNIVERSITARIO EN ESTADÍSTICA E INVESTIGACIÓN OPERATIVA (Plan 2013). (Asignatura

optativa).

Curso: 2023 Créditos ECTS: 5.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: JORDI CASTRO PÉREZ

Otros: Segon quadrimestre:

JORDI CASTRO PÉREZ - A

JESSICA RODRÍGUEZ PEREIRA - A

CAPACIDADES PREVIAS

Conocimientos básicos de Investigación Operativa / Optimización / Modelización en programación matemática.

REQUISITOS

Asignatura introductoria de Investigación Operativa.

O capítulos 1-3 de "F.S. Hillier, G.J. Lieberman, Introduction to Operations Research, McGraw-Hill" (o primeros capítulos de libro similar).

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 3. CE-2. Capacidad para dominar la terminologia propia de algún ámbito en el que sea necesaria la aplicación de modelos y métodos estadísticos o de investigación operativa para resolver problemas reales.
- 4. CE-3. Capacidad para formular, analizar y validar modelos aplicables a problemas de índole práctica. Capacidad de seleccionar el método y/o técnica estadística o de investigación operativa más adecuado para aplicar dicho modelo a cada situación o problema concreto.
- 5. CE-5. Capacidad para formular y resolver problemas reales de toma de decisiones en los diferentes ámbitos de aplicación sabiendo elegir el método estadístico y el algoritmo de optimización más adecuado en cada ocasión.
- 6. CE-6. Capacidad para utilizar el software más adecuado para realizar los cálculos necesarios en la resolución de un problema.
- 7. CE-9. Capacidad para implementar algoritmos de estadística e investigación operativa.

Transversales:

- 1. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.
- 2. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de especialidad, y valorar de forma crítica los resultados de dicha gestión.

Fecha: 22/02/2024 Página: 1 / 3

METODOLOGÍAS DOCENTES

Teoría:

Se presentan y discuten los contenidos de la asignatura combinando sesiones de teoría, problemas y laboratorio.

Problemas

Se intercalan con la teoría y se presentan y resuelven problemas y estudios de caso.

Prácticas:

Sesiones de laboratorio en que se muestra el uso de software para la resolución de problemas de programación estocástica.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo del curso es introducir el alumno a los problemas de la modelización de sistemas en presencia de incertidumbre, y familiarizarlo en las técnicas y algoritmos para tratarlos. El curso trata el caso de la programación estocástica, u optimización de problemas donde intervienen variables aleatorias. Se proporcionan las bases de la modelización y programación estocástica y se pretende que el estudiante al finalizar el curso sea capaz de identificar, modelizar, formular y solucionar problemas de toma de decisiones en que intervengan tanto variables deterministas como aleatorias.

Capacidades a adquirir:

- * Identificar ante un problema la posibilidad de plantearlo como problema de optimización estocástica.
- * Formular problemas de optimización estocástica, determinando decisiones de primera, segunda y sucesivas etapas.
- * Conocer las propiedades básicas de los problemas de optimización estocástica.
- * Conocer métodos de resolución especializados para problemas estocásticos.
- * Conocer y usar software para la resolución de problemas estocásticos, de alcance general (AMPL) y específicos (NEOS Server).

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	30,0	24.00
Horas aprendizaje autónomo	80,0	64.00
Horas grupo pequeño	15,0	12.00

Dedicación total: 125 h

CONTENIDOS

Introducción.

Descripción:

Presentación. Programación Estocástica en IO. Relación con otros métodos estocásticos.

Dedicación: 60h Clases teóricas: 38h Clases prácticas: 10h Clases de laboratorio: 12h

Modelización Estocástica.

Descripción:

Introducción a la Programación Estocástica. Ejemplos de modelos: dos etapas, multietapa, restricciones probabilistas, no lineales. Modelización con incertidumbre. Formulación de problemas estocásticos, aversión al riesgo, restricciones probabilistas.

Fecha: 22/02/2024 **Página:** 2 / 3

Propiedades básicas.

Descripción:

Propiedades básicas de los problemas de programación estocástica y teoría. Conjuntos factibles, función de recurso, problemas enteros estocásticos.

Análisis de las soluciones. El valor de la solución estocástica i el valor de la información perfecta.

Métodos de solución.

Descripción:

Problemas de dos etapas con recurso. Métodos de descomposición: Solución del problema primal (método L-Shapped, versión con diversos cortes); solución del problema dual (método Dantzig-Wolfe). Métodos de factorización de matrices con explotación de estructura. Métodos de punto interior para problemas estocásticos. Métodos para problemas multietapa, enteros y no lineales.

SISTEMA DE CALIFICACIÓN

Avaluación ordinaria:

Examen y realización de un trabajo práctico. La nota final estará compuesta en un 65% de la parte de teoría y un 35% de la parte práctica.

BIBLIOGRAFÍA

Básica:

- Birge, J.R.; Louveaux, F. Introduction to stochastic programming [en línea]. Springer, 1997 [Consulta: 07/07/2023]. Disponible a: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/b97617. ISBN 1280010053.
- Kall, P.; Wallace, S.W. Stochastic programming. Wiley, 1994. ISBN 0471951587.
- Prékopa, András. Stochastic programming. Kluwer Academic Publishers, 1995. ISBN 0792334825.

Fecha: 22/02/2024 **Página:** 3 / 3