

# Guía docente 200638 - OSME - Optimización en Sistemas y Mercados Energéticos

Última modificación: 21/06/2023

Unidad responsable: Facultad de Matemáticas y Estadística

**Unidad que imparte:** 715 - EIO - Departamento de Estadística e Investigación Operativa.

Titulación: MÁSTER UNIVERSITARIO EN ESTADÍSTICA E INVESTIGACIÓN OPERATIVA (Plan 2013). (Asignatura

optativa).

Curso: 2023 Créditos ECTS: 5.0 Idiomas: Inglés

#### **PROFESORADO**

**Profesorado responsable:** FRANCISCO JAVIER HEREDIA CERVERA

**Otros:** Primer quadrimestre:

FRANCISCO JAVIER HEREDIA CERVERA - A

#### **CAPACIDADES PREVIAS**

- Fundamentos de optimización continua y entera.

- Modelado de programación estocástica.
- Lenguajes de programación matemática (AMPL, GAMS, SAS/OR,...)

# **REQUISITOS**

- Se recomienda una formación equivalente a los cursos de Optimización Continua, Optimización Entera y Combinatoria y Programación Estocástica

# COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

### Específicas:

- 1. CE-2. Capacidad para dominar la terminologia propia de algún ámbito en el que sea necesaria la aplicación de modelos y métodos estadísticos o de investigación operativa para resolver problemas reales.
- 2. CE-5. Capacidad para formular y resolver problemas reales de toma de decisiones en los diferentes ámbitos de aplicación sabiendo elegir el método estadístico y el algoritmo de optimización más adecuado en cada ocasión.
- 3. CE-7. Capacidad para comprender artículos de estadística e investigación operativa de nivel avanzado. Conocer los procedimientos de investigación tanto para la producción de nuevos conocimientos como para su transmisión.
- 4. CE-9. Capacidad para implementar algoritmos de estadística e investigación operativa.
- 8. CE-3. Capacidad para formular, analizar y validar modelos aplicables a problemas de índole práctica. Capacidad de seleccionar el método y/o técnica estadística o de investigación operativa más adecuado para aplicar dicho modelo a cada situación o problema concreto.
- 9. CE-6. Capacidad para utilizar el software más adecuado para realizar los cálculos necesarios en la resolución de un problema.
- 10. CE-8. Capacidad de discutir la validez, el alcance y la relevancia de estas soluciones y saber presentar y defender sus conclusiones.

Fecha: 21/02/2024 Página: 1 / 4



#### **Transversales:**

- 5. EMPRENDIMIENTO E INNOVACIÓN: Conocer y entender la organización de una empresa y las ciencias que rigen su actividad; tener capacidad para entender las normas laborales y las relaciones entre la planificación, las estrategias industriales y comerciales, la calidad y el beneficio.
- 6. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.
- 7. TERCERA LENGUA: Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

# **METODOLOGÍAS DOCENTES**

El curso combinará sesiones teóricas y prácticas:

- Las sesiones teóricas se dedicarán a definir y explicar los fundamentos de los diferentes problemas que se plantean en la operación centralizada y de mercado de los sistemas energéticos, su formulación como problemas de programación determinista o estocástica y el estudio de las propiedades de estos modelos.

#### **OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA**

Se espera que los estudiantes que aprueben este curso:

- Conocer las principales características del sistema de producción de energía a nivel nacional.
- Saber y ser capaz de formular y resolver los problemas fundamentales en la operación centralizada de sistemas energéticos (Despacho Económico, Flujo Óptimo de Potencia, Asignación de Unidades).
- Entender la estructura y reglas de los mercados eléctricos (diario, de regulación, de ajuste, bilateral y de futuros), y conocer las propiedades y cómo calcular el punto de equilibrio (market clearing) para algunos de estos mercados a través del correspondiente modelo de optimización matemática.
- Comprender las diversas fuentes de incertidumbre en las operaciones del mercado eléctrico, cómo representar estas incertidumbres, junto con alguna medida de riesgo, a través de escenarios de probabilidad y la adecuada modelización de la programación estocástica.
- Comprender las características y propiedades de los diferentes problemas de funcionamiento del mercado (oferta óptima de generación del productor, oferta óptima de compra del consumidor, comercialización minorista óptima a medio plazo).
- Ser capaz de formular, desarrollar la implementación computacional y encontrar la solución óptima del modelo de programación estocástica para cualquier problema de funcionamiento del mercado.

# HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

| Tipo                       | Horas | Porcentaje |
|----------------------------|-------|------------|
| Horas grupo grande         | 30,0  | 24.00      |
| Horas aprendizaje autónomo | 80,0  | 64.00      |
| Horas grupo pequeño        | 15,0  | 12.00      |

Dedicación total: 125 h

Fecha: 21/02/2024 Página: 2 / 4



### **CONTENIDOS**

### Introducción: operación centralizada vs. de mercado de los sistemas de energía.

#### Descripción:

El sistema mayorista nacional de producción de energía.

Sistemas de energía centralizados versus liberalizados en todo el país.

Organización de los mercados eléctricos.

Dedicación: 1h 30m

Grupo grande/Teoría: 1h 30m

#### Optimización de operaciones de sistemas de energía centralizados.

#### Descripción:

Modelado de unidades de generación.

Despacho Económico Flujo de Carga Óptimo. Asignación de Unidades.

Dedicación: 9h

Grupo grande/Teoría: 9h

#### Modelos de casación del mercado

#### Descripción:

Funciones de utilidad, "surplus" de productores y consumidores, Beneficio Social, condiciones de equilibrio del mercado.

Modelo de Subasta de Periodo Único.

Modelo de Subasta de Periodo Múltiple.

Modelos de subasta restringida de transmisión: precios nodales.

Dedicación: 9h

Grupo grande/Teoría: 9h

# Modelos de programación estocástica en mercados eléctricos

### Descripción:

Fuentes de incertidumbre en los mercados eléctricos.

Caracterización de la incertidumbre a través de escenarios: algoritmos para la generación y reducción de escenarios. Gestión de riesgos.

Dedicación: 6h

Grupo grande/Teoría: 6h

**Fecha:** 21/02/2024 **Página:** 3 / 4



#### Optimización estocástica de la operación en mercados de productores de electricidad

#### Descripción:

Mercados spot: mercados diarios, de regulación y de ajuste.

Árbol de escenarios para mercados spot.

Modelos de programación estocástica para la oferta óptima de generación.

Modelado de riesgos.

Dedicación: 9h

Grupo grande/Teoría: 9h

# SISTEMA DE CALIFICACIÓN

La nota final de la asignatura se basará en una serie de trabajos de laboratorio donde se pedirá a los alumnos que formulen, implementen con AMPL y analicen algunos problemas de funcionamiento de sistemas energéticos y mercados similares a los estudiados durante el curso.

# **BIBLIOGRAFÍA**

#### Básica:

- Gómez Expósito, Antonio; Conejo, Antonio J.; Cañizares, Claudio. Electric energy systems: analysis and operation [en línea]. Boca Raton: CRC Press, 2009 [Consulta: 05/07/2023]. Disponible a: <a href="https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=3599">https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=3599</a> 45. ISBN 9780849373657.
- Conejo, Antonio J.; Carrión, Miguel; Morales, Juan M. Decision making under uncertainty in electricity markets. Springer, 2010. ISBN 9781441974204.
- Zhu, Jizhong. Optimization of power system operation [en línea]. Piscataway, N.J: Wiley-IEEE, 2009 [Consulta: 05/07/2023]. Disponible a:

https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=456286. ISBN 9780470298886.

#### Complementaria:

- Pérez-Arriaga, Ignacio J. Regulation of the power sector [en línea]. 2013 [Consulta: 05/07/2023]. Disponible a: <a href="https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-1-4471-5034-3">https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-1-4471-5034-3</a>. ISBN 9781447150336.

Fecha: 21/02/2024 Página: 4 / 4