

Guía docente 230694 - IBES - Introducción a los Sistemas Electrónicos Biomédicos

Última modificación: 25/05/2023

Unidad responsable: Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA ELECTRÓNICA (Plan 2013). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN TECNOLOGÍAS AVANZADAS DE TELECOMUNICACIÓN (Plan 2019).

(Asignatura optativa).

MÁSTER UNIVERSITARIO EN INGENIERÍA ELECTRÓNICA (Plan 2022). (Asignatura optativa).

Curso: 2023 Créditos ECTS: 5.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: Consultar aquí / See here:

https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/respon

sables-assignatura

Otros: Consultar aquí / See here:

https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/profess

orat-assignat-idioma

CAPACIDADES PREVIAS

Análisis de circuitos analógicos básicos. Fundamentos de procesado de señal: Transformada de Fourier, teoremas de muestreo, diseño de filtros digitales. Programación Matlab y/o Python

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEE9. Capacidad para diseñar, implementar y operar instrumentación electrónica de laboratorio de altas prestaciones, con énfasis en el análisis de errores, la calibración y el control virtual.

CEE21. Capacidad para procesar señales de variable continua mediante técnicas digitales.

CEE11. Capacidad para evaluar la calidad y seguridad de los productos electrónicos incluyendo la fiabilidad, los ensayos físicos, la seguridad eléctrica y la compatibilidad electromagnética.

Transversales:

CT2. SOSTENIBILIDAD Y COMPROMISO SOCIAL: Conocer y comprender la complejidad de los fenómenos económicos y sociales típicos de la sociedad del bienestar; tener capacidad para relacionar el bienestar con la globalización y la sostenibilidad; lograr habilidades para utilizar de forma equilibrada y compatible la técnica, la tecnología, la economía y la sostenibilidad.

CT3. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

CT4. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de especialidad, y valorar de forma crítica los resultados de dicha gestión.

Fecha: 12/07/2023 **Página:** 1 / 5

METODOLOGÍAS DOCENTES

Clases expositivas Clases de aplicación Ejercicios individuales/grupo Trabajo experimental laboratorio y/o asíncrono Aprendizaje basado en proyectos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objectivo de la asignatura es que los alumnos conozcan los diferentes tipos de señales que se pueden medir en el cuerpo humano, y sean capaces de seleccionar instrumentos, adquirir señales y procesarlas con el fin de obtener estimadores relevantes para la practica clínica.

Los objetivos de aprendizaje específicos son:

- Conocer la finalidad de los electrodos como a interfase elèctrica, especialmente en aplicaciones portables.
- Entneder el funcionamento físico de los sensores que se usan en aplicacions biomèdicas
- Entender las especificacions tecnicas de los instrumentos y dispositivos electronicos que se usan en instrumentación biomèdica
- Adquirir señales biológicas y processarlas para obtener indicadores relevantes pare la practica clínica
- Entender las regulaciones que afectan los sistemes biomédicos, incluyendo seguridad y compatibilidad electromagnética

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	86,0	68.80
Horas grupo grande	19,0	15.20
Horas grupo pequeño	20,0	16.00

Dedicación total: 125 h

CONTENIDOS

Introducción a los sistemas biomédicos

Descripción:

Introducción a los objetivos de la asignatura. Definiciones básicas. Concepto de ingenieria biomedica, Revisión historica

Actividades vinculadas:

Entender la complejidad de las señales que se pueden adquirir del cuerpo humano, las restricciones en el diseño de los sistemas y las regulaciones asociadas

Competencias relacionadas:

CT4. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de especialidad, y valorar de forma crítica los resultados de dicha gestión.

Dedicación: 5h

Grupo grande/Teoría: 1h Aprendizaje autónomo: 4h

Fecha: 12/07/2023 **Página:** 2 / 5

Señales eléctricas endógenas

Descripción:

Fenómenos electrobiologicos. Electrodos biomedicos. Electrodos secos y sin contacto para aplicaciones "weareables". Requisitos para los sistemas de medida de biopotenciales.

Objetivos específicos:

Entender el origen de las señales eléctricas de los seres vivos. Entender la funcion de los electrodos y su impacto en el diseño del sistema y la calidad de los registros obtenidos. Capacidad de registrar y procesar señales de biopoten ciales del cuerpo humano.

Actividades vinculadas:

Laboratorio: adquisición de señales de ECG

Competencias relacionadas:

CEE21. Capacidad para procesar señales de variable continua mediante técnicas digitales.

CT3. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar, ya sea como un miembro más o realizando tareas de dirección, con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

Dedicación: 22h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 16h

Propiedades eléctricas y térmicas de los materiales biológicos

Descripción:

Revisión de las propiedades dieléctricas, modelos físicos, modelos descriptivos. Propiedades térmicas: ecuación de transferencia de calor biológica

Objetivos específicos:

Entender las propiedades pasivas de los materiales biológicos. Entender el tipo de sensores y de excitaciones necesarios para la medida de estas propiedades. Ser capaz de construir estimadores de grasa corporal o de balance de fluidos a partir de medidas de impedancia eléctrica. Ser capaz de obtener el ritmo cardíaco a partir de las propiedades eléctricas del musculo.

Dedicación: 14h Grupo grande/Teoría: 4h Aprendizaje autónomo: 10h

Fecha: 12/07/2023 **Página:** 3 / 5

Sistemas de diagnostico

Descripción:

Monitores de señales eléctricas (ECG, EEG, EMG, etc). Medidas de presión arterial. Medidas de caudal y gasto cardíaco. Pletismografia y cardiografia de impedancias. Volumen y caudal respiratorio. Sistemas de imágenes médicas: CT, MRI, PET, EIT)

Objetivos específicos:

Capacidad de entender los principios físicos de los sensores que se usan en las medidas en el cuerpo humano. Capacidad de diseñas y modificar circuitos electrónicos de medida de señales biológicas, Capacidad de procesar señales biológicas para extraer información relevante clinicamente.

Actividades vinculadas:

LABORATORIO

- -monitorizacio de la ventilación con termistor
- -monitorizacion de la perfusión sanguínea con fotopletismografo
- -Adquisición de ECG
- -Proyecto abierto combinando dos o mas señales

Dedicación: 72h Grupo grande/Teoría: 6h Grupo pequeño/Laboratorio: 18h Aprendizaje autónomo: 48h

Dispositivos de TErapia

Descripción:

Estimulación eléctrica, estimulación magnética, calentamiento

Objetivos específicos:

Capacidad de entender los principios físicos de la estimulación eléctrica y magnética. Capacidad de entender los procesos térmicos en el cuerpo humano

Dedicación: 12h Grupo grande/Teoría: 4h Aprendizaje autónomo: 8h

SISTEMA DE CALIFICACIÓN

Examen _Final: 45% Ejercicios: 5%

Laboratorio/Proyecto: 50%

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

No se permiten dispositivos con capacidad de comunicación inalámbrica, ni con capacidad de almacenar información alfanumérica, incluidas calculadoras programables.

BIBLIOGRAFÍA

Básica:

- Kramme, R.; Hoffmann, KP; Pozos, RS. Springer handbook of medical technology [en línea]. Springer, 2011 [Consulta: 21/09/2016]. Disponible a: http://dx.doi.org/10.1007/978-3-540-74658-4. ISBN 9783540746584.

Complementaria:

- Leitgeb, N. Safety of electromedical devices [en línea]. Springer, 2010 [Consulta: 21/09/2016]. Disponible a:

Fecha: 12/07/2023 **Página:** 4 / 5

http://dx.doi.org/10.1007/978-3-211-99683-6. ISBN 9783211996836.

- Pavlovic, M. Bioengineering, a conceptual approach [en línea]. Springer, 2015 [Consulta: 08/06/2022]. Disponible a: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-3-319-10798-1. ISBN 9783319107981.
- Plonsey, R.; Barr, R.C. Bioelectricity: a quantitative approach [en línea]. 3rd ed. New York: Kluwer Academic/Plenum, 2007 [Consulta: 21/10/2016]. Disponible a: $\frac{\text{http://dx.doi.org/}10.1007/978-0-387-48865-3}{\text{http://dx.doi.org/}10.1007/978-0-387-48865-3}$. ISBN 9780387488646.

Fecha: 12/07/2023 **Página:** 5 / 5