

Guía docente 230722 - PID - Dispositivos Fotónicos Integrados para Telecom e Iot

Última modificación: 20/06/2019

Unidad responsable: Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona **Unidad que imparte:** 739 - TSC - Departamento de Teoría de la Señal y Comunicaciones.

Titulación: Curso: 2019 Créditos ECTS: 5.0

Idiomas: Inglés

PROFESORADO

Profesorado responsable: José Antonio Lázaro

Otros: Sandra Bermejo

CAPACIDADES PREVIAS

Conocimientos básicos de 1ro y 2do de Grados en Física, Electrónica o Comunicaciones.

METODOLOGÍAS DOCENTES

Introducción teórica & Practicas de Laboratorio - Diseño

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Concebir y diseñar nuevos dispositivos integrados fotónicos,

Introducción a la fabricación en sala blanca y caracterización de dispositivos en laboratorio.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	13,0	10.40
Horas grupo grande	26,0	20.80
Horas aprendizaje autónomo	86,0	68.80

Dedicación total: 125 h

CONTENIDOS

Unidad 1

Descripción:

Visión general de las demandas actuales y futuras de los dispositivos fotónicos integrados.

Dedicación: 38h

Grupo grande/Teoría: 10h Aprendizaje autónomo: 28h

Fecha: 29/07/2021 **Página:** 1 / 2

Unidad 2

Descripción:

Tecnologías actuales y futuras que responden a las demandas: Silicon Photonics, tecnologías adicionales para expandir las funcionalidades de Silicon Photonics como: grafeno, materiales III-V, nanomateriales, etc.

Dedicación: 34h

Grupo grande/Teoría: 5h Aprendizaje autónomo: 29h

Unidad 3

Descripción:

Introducción a las tecnologías de fabricación de salas blancas

Dedicación: 34h Grupo grande/Teoría: 5h Aprendizaje autónomo: 29h

SISTEMA DE CALIFICACIÓN

Evaluación continuada (60%) + Controles (40%)

BIBLIOGRAFÍA

Básica:

- Chrostowski, L.; Hochberg, M. Silicon photonics design. Cambridge: Cambridge University Press, 2015. ISBN 9781107085459.
- Inniss, D., Rubenstein, R. Silicon photonics: fueling the next information revolution [en línea]. Amsterdam: Elsevier Science & Technology, 2016 [Consulta: 18/09/2019]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=4760965. ISBN 9780128029923.
- Fortino, G.; Trunfio, P. eds.. Internet of things based on smart objects: technology, middleware and applications [en línea]. Cham: Springer International Publishing, 2014 [Consulta: 15/07/2019]. Disponible a: http://dx.doi.org/10.1007/978-3-319-00491-4. ISBN 9783319004914.

Complementaria:

- Kasap, S.O.; Sinha, R.K. Optoelectronics and photonics: principles and practices. 2nd ed. Boston: Pearson, 2013. ISBN 9780273774174.

Fecha: 29/07/2021 **Página:** 2 / 2