

Guía docente 230733 - EMST - Ciencia y Tecnología de Medida Electrónica

Última modificación: 24/05/2024

Unidad responsable: Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN (Plan 2013). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN TECNOLOGÍAS AVANZADAS DE TELECOMUNICACIÓN (Plan 2019).

(Asignatura optativa).

MÁSTER UNIVERSITARIO EN INGENIERÍA ELECTRÓNICA (Plan 2022). (Asignatura obligatoria).

Curso: 2024 Créditos ECTS: 5.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: PERE JOAN RIU COSTA

Otros: Primer quadrimestre:

RAMON BRAGOS BARDIA - 21, 23 PERE JOAN RIU COSTA - 21, 23

Segon quadrimestre:

RAMON BRAGOS BARDIA - 31, 33 PERE JOAN RIU COSTA - 31, 33

CAPACIDADES PREVIAS

Diseño de funciones electrónicas analógicas, diseño de filtros analógicos y digitales. Innstrumentacion electrónica básica: uso de los instrumentos y conocimientos de los diagramas de bloques. Estadística: variables aleatorias y procesos estocásticos. Conocimientos de evaluación de la incertidumbre según la GUM. Procesado de señal básico: transformada de Fourier y teoremas de muestreo.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CMEE8. Implementar sistemas de instrumentación distribuidos y redes de sensores avanzados incluyendo sistemas autosuficientes basados en la recolección de energía del medio ambiente.

CMEE9. Diseñar, implementar y operar instrumentación electrónica de laboratorio de altas prestaciones, con énfasis en el análisis de errores, la calibración y el control virtual.

CMEE10. Evaluar la idoneidad de los metodos de medida y estimar la incertidumbre asociada

CMEE11. Diseñar e implementar sistemas basados en sensores y orientados a aplicación

Transversales:

CTMEE4. Uso solvente de los recursos de información. Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de especialidad y valorar de forma crítica los resultados de dicha gestión.

METODOLOGÍAS DOCENTES

Clases expositivas
Clases de aplicación
Aprendizaje basado en proyectes
Trabajo práctico de laboratorio
Ejercicios
Pruebas de respuesta corta
Pruebas de respuesta larga

Fecha: 31/03/2025 Página: 1 / 5

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo del curso es el aprendizaje de métodos de diseño, implementación y operación de instrumentación avanzada y sistemas sensores. Esto incluye redes de instrumentos y de sensores, recuperación de señales en entorns ruidosos, métodos avanzados de acondicionamiento de sensores, sistemas de sensores inteligentes, codificación de la información en dominios no-analógicos y métodos avanzados de análisis de la incertidumbre.

Resultados del aprendizaje:

- -conocimiento de los principios físicos y tecnologías de fabricación de sensores avanzados
- -conocimiento del diseño y operación de redes de sistemas de medida
- -Entender las especificaciones de instrumentos de gama alta
- -Conocer los principios básicos de calibración de instrumentos y sensores y las técnicas de realización
- -Saber diseñar instrumentos virtuales y sistemas de test automático
- -Conocer les técnicas de diseño de interfaces de medida y procesamiento parea IoT
- -Conocer y saber como aplicar las regulaciones que afectan a los dispositivos electrónicos

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	26,0	20.80
Horas grupo pequeño	13,0	10.40
Horas aprendizaje autónomo	86,0	68.80

Dedicación total: 125 h

CONTENIDOS

Introducción

Descripción:

Introducción y descripción de los objetivos, contenidos y actividades del curso

Dedicación: 1h

Grupo grande/Teoría: 1h

Metodos avanzados de estimacion de la incertidumbre

Descripción:

Limites de la GUM

Variables no-Gausianas. Metodos numéricos Combinacion de distintis tipos de eror

Dedicación: 14h Grupo grande/Teoría: 3h Grupo pequeño/Laboratorio: 1h Aprendizaje autónomo: 10h

Fecha: 31/03/2025 **Página:** 2 / 5

Recuperación de señales inmersas en ruido

Descripción:

Estimadores óptimos para CC.

Estimadores óptimos para AC. Voltimetro vectorial

Análisis de ruido

Análisis de interferencias

Dedicación: 16h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 10h

Patrones y calibración. Patrones de tiempo

Descripción:

Codificación de la información en dominios temporales

Contadores Universales

Osciladores de baja incertidumbre

Análisis de la incertidumbre en medidas de tiempo

Dedicación: 15h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 1h Aprendizaje autónomo: 10h

Diseño de sistemas sensores basados en la aplicación

Descripción:

caso de estudio de un sensor especifico para aplicación *

Requisitos y extracción de especificaciones

*(el caso de estudio estará basado en un sensor de impedancia eléctrica para aplicaciones biotecnologicas)

Dedicación: 23h Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 3h Actividades dirigidas: 15h

Arquitecturas para la adquisición en sistemas sensores

Descripción:

Alternativas para la arquitectura del sistema

Front-end analógico

Soluciones "system-on-chip"

Dedicación: 28h Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 3h Actividades dirigidas: 20h

Fecha: 31/03/2025 **Página:** 3 / 5

Análisis y procesado de datos de sensores

Descripción:

Procesado de señal de sensores

Ajuste a modelo

Extracción de variables físicas

Dedicación: 28h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 3h Actividades dirigidas: 21h

ACTIVIDADES

LABORATORIO

Descripción:

Desarrollo de un sensor basado en espectroscopia de impedancia eléctrica

- -Caracterización de la resolución efectiva del osciloscopio y métodos de mejora
- -Codificación de un voltímetro vectorial de banda ancha por software
- -Construcción y caracterización del sensor

Dedicación: 12h

Grupo pequeño/Laboratorio: 12h

SISTEMA DE CALIFICACIÓN

Examen escrito final/mitad de semestre: 40%

Ejercicios individuales, escritos: 10%

Presentación de proyectos de grupo, orales y escritos: 20% Desarrollo de proyectos de grupo, incluido laboratorio: 30%

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

En los exámenes escritos no se podrán usar dispositivos con capacidad de comunicación inalámbrica ni con capacidad de almacenar información textual o gráfica, incluidas las calculadores programables.

Fecha: 31/03/2025 **Página:** 4 / 5

BIBLIOGRAFÍA

Básica:

- Pallás-Areny, R.; Webster, J.G. Sensors and signal conditioning [en línea]. 2nd ed. New York: John Wiley and Sons, 2001 [Consulta: 03/02/2021]. Disponible a:
- https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?docID=4747125. ISBN 0471332321.
- D'Antona, G.; Ferrero, A. Digital Signal Processing for Measurement Systems. Theory and Applications [en línea]. New York, NY: Springer, 2006 [Consulta: 20/07/2022]. Disponible a: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/0-387-28666-7. ISBN 9781281334732.
- C. Ratcliffe and B Ratcliffe. Doubt-Free Uncertainty In Measurement [en línea]. Springer, 2015 [Consulta: 20/07/2022]. Disponible a: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-3-319-12063-8. ISBN 9783319120638.
- Wang, P.; Liu, Q. Biomedical sensors and measurement [en línea]. Heidelberg; New York: Hangzhou: Springer, 2011 [Consulta: 20/07/2022]. Disponible a: https://link-springer-com.recursos.biblioteca.upc.edu/book/10.1007/978-3-642-19525-9. ISBN 9787308082693.

Complementaria:

- Putten, A.F.P.V. Electronic measurement systems: theory and practice. 2nd ed. Bristol; Philadelphia: IOP Publishing, 1996. ISBN 978-0750303408.
- Dargie, W.; Poellabauer, C. Fundamentals of wireless sensor networks: theory and practice [en línea]. Chichester: John Wiley & Sons, 2010 [Consulta: 17/07/2017]. Disponible a: http://onlinelibrary.wiley.com/book/10.1002/9780470666388. ISBN 9780470666388.

Fecha: 31/03/2025 **Página:** 5 / 5