

Guía docente 230850 - CPC - Fenómenos Críticos y Complejidad

Última modificación: 14/12/2023

Unidad responsable: Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona

Unidad que imparte: 748 - FIS - Departamento de Física.

Titulación: MÁSTER UNIVERSITARIO EN FÍSICA PARA LA INGENIERÍA (Plan 2018). (Asignatura obligatoria).

Curso: 2023 Créditos ECTS: 5.0 Idiomas: Catalán, Castellano, Inglés

PROFESORADO

Profesorado responsable: Consultar aquí / See here:

https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/respon

sables-assignatura

Otros: Consultar aquí / See here:

https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/profess

<u>orat-assignat-idioma</u>

CAPACIDADES PREVIAS

- Ecuaciones diferenciales

- Fundamentos de Probabilidad y Estadística
- Fundamentos de Mecánica Estadística pueden ser útiles, pero no obligatorios

REQUISITOS

Ninguno

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Básicas:

CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

METODOLOGÍAS DOCENTES

En las sesiones de clase se exponen los conceptos principales y los resultados más importantes, con diversos ejemplos que ayudan a su comprensión. Con cierta periodicidad los estudiantes exponen en clase ejercicios o temas que se les han sido planteados con antelación.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Familiarizarse con la fenomenología y técnicas de análisis de los fenómenos críticos.

Conocer y poder aplicar a sistemas físicos las técnicas de análisis de la teoría de bifurcaciones.

Familiarizarse con la modelización de sistemas multidisciplinares con comportamiento estocástico.

Ser capaz de aplicar las técnicas de procesos estocásticos a sistemas sencillos.

Familiarizarse con los sistemas de redes complejas, y ser capaz de caracterizarlas.

Fecha: 04/01/2024 **Página:** 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	81,0	62.79
Horas grupo grande	48,0	37.21

Dedicación total: 129 h

CONTENIDOS

Sistemas dinámicos

Descripción:

Flujos y mapas

Bifurcaciones

Formas Normales

Sistemas conservativos

Bifurcationes locales y globales

Caos

Formación de patrones

Objetivos específicos:

Familiarizarse con las herramientas de Sistemas Dinámicos para el análisis de los sistemas complejos

Actividades vinculadas:

Presentación de ejercicios escritos

Dedicación: 31h 15m Grupo grande/Teoría: 10h Actividades dirigidas: 6h 15m Aprendizaje autónomo: 15h

Procesos estocásticos

Descripción:

Introducción a los procesos estocásticos

Procesos de Markov

Ecuaciones diferenciales estocásticas Tiempos de primer paso y de relajación

Sistemas con dependencia espacial

Objetivos específicos:

Familiarizarse con las técnicas de los procesos estocásticos para el análisis de la dinámica de diferentes sistemas

Actividades vinculadas:

Presentación de ejercicios escritos

Dedicación: 31h 15m Grupo grande/Teoría: 10h Actividades dirigidas: 6h 15m Aprendizaje autónomo: 15h

Fecha: 04/01/2024 **Página:** 2 / 4

Fenómenos críticos de no-equilibrio

Descripción:

Introducción a los fenómenos críticos de equilibrio

Sistemas de no-equilibrio

Percolación

Transiciones de fase de estados absorbentes Otros ejemplos de sistemas de no-equilibrio

Objetivos específicos:

Familiarizarse con distintos fenómenos críticos de no-equilibrio y con su análisis

Actividades vinculadas:

Presentació d'exercicis escrits

Dedicación: 31h 15m Grupo grande/Teoría: 10h Actividades dirigidas: 6h 15m Aprendizaje autónomo: 15h

Redes complejas

Descripción:

Introducción a las redes complejas Estructura a gran escala de redes complejas Procesos dinámicos en redes complejas

Modelos de redes

Objetivos específicos:

Familiarizarse con los sistemas de redes complejas, y ser capaz de caracterizarlas.

Actividades vinculadas:

Presentación de ejercicios escritos

Dedicación: 31h 15m Grupo grande/Teoría: 10h Actividades dirigidas: 6h 15m Aprendizaje autónomo: 15h

SISTEMA DE CALIFICACIÓN

La calificación constará de ejercicios escritos (PE), y de la presentación de trabajos e intervenciones en clase (TC). La calificación final vendrá dada por: 0.70*PE+0.30*TC No hay actos de evaluación reevaluables.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

No aplica

Fecha: 04/01/2024 **Página:** 3 / 4

BIBLIOGRAFÍA

Básica:

- Livi, R.; Politi, P. Nonequilibrium Statistical Physics: A Modern Perspective. Cambridge: Cambridge University Press, 2017. ISBN 9781107049543.
- Menczer, F.; Fortunato, S.; Davis, C.A. A first course in network science. Cambridge University Press, 2020. ISBN 9781108471138.
- Stauffer, D.; Aharony, A. Introduction to percolation theory. Rev. 2nd ed. London; New York: Taylor & Francis, 1994. ISBN 0748402535.
- Strogatz, S.H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering [en línea]. 2nd ed. Cambridge: CRC Press Press, 2015 [Consulta: 21/09/2020]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=1181622. ISBN 9780813349107.
- Gardiner, C.W. Stochastic methods: a handbook for the natural and social sciences. 4th ed. Berlin: Springer-Verlag, 2009. ISBN 9783540707127.

RECURSOS

Otros recursos:

Campus Virtual de la UPC, ATENEA

Fecha: 04/01/2024 Página: 4 / 4