

Guía docente 295117 - 295II232 - Mecatrónica

Última modificación: 14/06/2023

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

707 - ESAII - Departamento de Ingeniería de Sistemas, Automática e Informática Industrial.

712 - EM - Departamento de Ingeniería Mecánica.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA INTERDISCIPLINARIA E INNOVADORA (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO EN INVESTIGACIÓN EN INGENIERÍA MECÁNICA (Plan 2021). (Asignatura

optativa).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: ALFONSO CONESA ROCA

Otros: Primer quadrimestre:

ALFONSO CONESA ROCA - Grup: T10 RAMON JEREZ MESA - Grup: T10

CAPACIDADES PREVIAS

Análisis básicos de sistemas mecánicos, eléctricos y circuitos electrónicos.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMUEII-15. Diseñar e implementar sistemas de adquisición, actuación y control que integren tecnología electrónica, eléctrica y mecánica en el ámbito de los sistemas inteligentes de producción. (Competencia específica de la especialidad Sistemas Avanzados de Producción / Advanced Manufacturing Systems)

Genéricas:

CGMUEII-01. Participar en proyectos de innovación tecnológica en problemas de naturaleza multidisciplinar, aplicando conocimientos matemáticos, analíticos, científicos, instrumentales, tecnológicos y de gestión.

CGMUEII-05. Comunicar hipótesis, procedimientos y resultados a públicos especializados y no especializados de un modo claro y sin ambigüedades, tanto de forma oral como mediante informes, esquemas y diagramas, en el contexto del desarrollo de soluciones técnicas para problemas de naturaleza interdisciplinar.

Transversales:

05 TEQ. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

06 URI. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

Fecha: 27/07/2023 Página: 1 / 5

METODOLOGÍAS DOCENTES

Las metodologías utilizadas para el desarrollo de los temas son las siguientes:

- Clase con soporte multimedia, para proporcionar información sintetizada y organizada a los alumnos.
- Exposición participativa en clase, en la que, y para que el alumno no sea un elemento pasivo en el proceso de aprendizaje, el profesor realiza preguntas directas o debates sobre puntos considerados particularmente relevantes o dificultades conceptuales propuestas.
- Aprendizaje basado en problemas, ya sea individualmente o en un grupo en el que el profesor propone resolver ejercicios fuera del aula para que el estudiante pueda evaluar el grado de comprensión de la materia.
- En las sesiones experimentales de laboratorio, la metodología adoptada es la de pequeños grupos cooperativos en los que los estudiantes adquieren habilidades en técnicas de simulación y prueba de circuitos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Que el estudiante pueda:

- integrar en el diseño de un sistema mecánico las tecnologías de electricidad, electrónica, informática y comunicaciones,
- automatizar el funcionamiento de los sistemas mecánicos y comunicarlos con su entorno,
- diseñar sistemas mecatrónicos adaptados a las necesidades del producto.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	22,0	14.67
Horas grupo grande	22,0	14.67
Horas actividades dirigidas	4,0	2.67
Horas aprendizaje autónomo	102,0	68.00

Dedicación total: 150 h

CONTENIDOS

T1.- Ingeniería de Sistemas Mecánicos

Descripción:

T1.- Introducción a la ingeniería de sistemas mecánicos

T1.- Estructura constructiva de máquinas

Dedicación: 21h Grupo grande/Teoría: 6h Aprendizaje autónomo: 15h

T2.- Máquinas y actuadores eléctricos

Descripción:

T2.- Máquinas y actuadores eléctricos. Revisión de les máquinas

T2.- Ecuaciones y modelos estáticos y dinámicos

T2.- Dimensionado de máquinas eléctricas

Dedicación: 21h Grupo grande/Teoría: 6h Aprendizaje autónomo: 15h

Fecha: 27/07/2023 **Página:** 2 / 5

T3.- Elementos sensores

Descripción:

T3.- Elementos sensores de voltaje y corriente, y acondicionamiento de la señal.

T3.- Sensores de temperatura, fuerza, posición, aceleración, finales de carrera, encoders, ...

Dedicación: 14h Grupo grande/Teoría: 4h Aprendizaje autónomo: 10h

T4.- Sistemas de Control y adquisición

Descripción:

T4.- Visión general de los sistemas de adquisición y estrategias de control

T4.- Control en lazo cerrado y control digital

Dedicación: 7h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 5h

T5.- Equipos PLCs

Descripción:

T5.- Introducción a los pequeños PLCs

T5.- Programación básica y disponibilidad de entradas-salidas

Dedicación: 7h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 5h

T6.- Comunicaciones básicas

Descripción:

T6.- Comunicaciones básicas

T6.- Transmisiones diferenciales y transmisiones sin hilos

Dedicación: 2h

Grupo grande/Teoría: 2h

Fecha: 27/07/2023 **Página:** 3 / 5

T7.- Placas Arduino y Raspberry Pi

Descripción:

- T7.- Introducción a las placas Arduino y Raspberry Pi, y su programación
- T7.- Placas de accesorios y su conectividad
- T7.- Introducción a los microcontroladores PIC y su programación

Actividades vinculadas:

Sesiones de laboratorio 1 a 5:

Sesión 1: Introducción a las placas Arduino y su entorno de programación. Programación básica. Entradas – salidas digitales, pulsadores, leds, LCD, PWM, timers.

Sesión 2: Placa Arduino II. Programación de la conversión AD y acondicionamiento de la señal.

Sesión 3: Introducción a la placa Raspberry Pi y su entorno de programación.

Sesión 4: Placa Raspberry Pi II. Control de un motor paso a paso o de continua con su actuador.

Sesión 5: Introducción a los microcontroladores PIC y su entorno de programación. Programación básica y prototipado de los microcontroladores PIC.

Dedicación: 33h

Grupo pequeño/Laboratorio: 10h Aprendizaje autónomo: 23h

T8.- Diseño de pequeñas aplicaciones

Descripción:

T8.- Introducción al software de diseño de Placas de Circuito Impreso

T8.- Diseño e implementación de una aplicación

Actividades vinculadas:

Sesiones de laboratorio 6 a 11:

Sesión 6: Introducción al software básico de PCB. Sesión 7: Introducción al software avanzado de PCB.

Sesión 8: Diseño de aplicaciones para Arduino o Raspberry Pi (I Esquemáticos).

Sesión 9: Diseño de aplicaciones para Arduino o Raspberry Pi (II Diseño de la placa).

Sesión 10: Diseño de aplicaciones para Arduino o Raspberry Pi (III Implementación de la placa).

Sesión 11: Montaje y verificación.

Dedicación: 42h

Grupo pequeño/Laboratorio: 12h Aprendizaje autónomo: 30h

SISTEMA DE CALIFICACIÓN

El sistema de evaluación consiste en las siguientes calificaciones con sus pesos parciales:

- Un test Parcial: 25%.

- Un test Final: 25%.

- Laboratorio: 25%.

- Ejercicios de seguimiento: 25%.

Fecha: 27/07/2023 Página: 4 / 5

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

La realización de las diferentes pruebas consiste en:

- Las pruebas parciales o finales son pruebas individuales escritas basadas en la teoría y los problemas trabajados en el curso.
- Las actividades de laboratorio son de asistencia obligatoria a los estudiantes. Todo y que se trabaja en grupo, se evaluarán individualmente, teniendo en cuenta la forma de trabajo cooperativo, el grado de implicación, la tasa de progreso y el grado de realización del trabajo realizado.
- Las actividades de ejercicios de seguimiento son individuales. Se realizarán después del horario lectivo y normalmente se entregan a través de la aplicación ATENEA.

RECURSOS

Otros recursos:

Placas Arduino. Placas Raspberry Pi. Diferentes placas de accesorios comerciales de estas placas. Ordenador PC. Equipamiento básico de laboratorio de electrónica.

Fecha: 27/07/2023 **Página:** 5 / 5