

Guía docente 295124 - 295II334 - Dispositivos Corporales

Última modificación: 14/06/2023

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA INTERDISCIPLINARIA E INNOVADORA (Plan 2019). (Asignatura

optativa).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: Cosp Vilella, Jordi

Otros: Primer quadrimestre:

JORDI COSP VILELLA - Grup: T10

CAPACIDADES PREVIAS

Sistemas electrónicos, Informática

REQUISITOS

Adquisición de datos e instrumentación

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMUEII-19. Desarrollar aplicaciones traslacionales con el objetivo de alcanzar una mejor comprensión de fenómenos fisiológicos de relevancia clínica y para el diseño de nuevas aplicaciones en áreas que tengan un impacto en el cuidado de la salud de las personas. (Competencia específica de la especialidad Aplicaciones en Salud y Biomedicina / Healthcare and Biomedical Applications)

Genéricas:

CGMUEII-01. Participar en proyectos de innovación tecnológica en problemas de naturaleza multidisciplinar, aplicando conocimientos matemáticos, analíticos, científicos, instrumentales, tecnológicos y de gestión.

CGMUEII-05. Comunicar hipótesis, procedimientos y resultados a públicos especializados y no especializados de un modo claro y sin ambigüedades, tanto de forma oral como mediante informes, esquemas y diagramas, en el contexto del desarrollo de soluciones técnicas para problemas de naturaleza interdisciplinar.

Transversales:

05 TEQ. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

06 URI. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

METODOLOGÍAS DOCENTES

Clases teóricas Clases prácticas Trabajo práctico al laboratorio Trabajo individual y en grupo

Fecha: 26/07/2023 Página: 1 / 4

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objectivo del curso es la formación en los métodos para diseñar y usar sistemas corporales

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	22,0	14.67
Horas aprendizaje autónomo	102,0	68.00
Horas grupo grande	22,0	14.67
Horas actividades dirigidas	4,0	2.67

Dedicación total: 150 h

CONTENIDOS

Introducción a los dispositivos corporales

Descripción:

Introducción a los sistemas corporales. Instrumentación, implementación, tecnologías disponibles, medida de señales fisiológicas.

Objetivos específicos:

Introducción a los sistemas corporales y a la cadena de adquisición de señal.

Dedicación: 2h

Grupo grande/Teoría: 2h

Sensores para dispositivos corporales

Descripción:

Descripción y uso de los sensores más habitualmente usados en los dispositivos corporales.

Objetivos específicos:

Conocer y saber usar los sensores usados en dispositivos corporales.

Dedicación: 18h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 12h

Detección del movimiento humano mediante sensores inerciales

Descripción:

Uso de sensores inerciales para la detección del movimiento humano y aplicación de los algoritmos adecuados para procesar las señales adquiridas

Objetivos específicos:

Usar sensores inerciales y aplicar los algoritmos adecuados para detectar el movimiento humano.

Dedicación: 28h Grupo grande/Teoría: 6h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 18h

Fotopletismografía

Descripción:

Uso de sensores ópticos para la detección de magnitudes relacionadas con la presión sanguínea y aplicación de los algoritmos necesarios para procesar las señales adquiridas.

Objetivos específicos:

Conocer y diseñar sistemas fotopletismográficos.

Dedicación: 28h Grupo grande/Teoría: 6h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 18h

Energy Harvesting

Descripción:

Fuentes de energía disponibles en el ambiente para sistemas corporales: Gradiente de temperatura, luz, movimiento. Cuestiones sobre energía y potencia.

Objetivos específicos:

Conocer y saber usar las fuentes de energía disponibles en el ambiente.

Dedicación: 18h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 12h

Comunicación inalámbrica y almacenaje de datos

Descripción:

Características y uso de los diferentes protocolos de comunicación inalámbricos: NFC, bluetooth, ANT

Objetivos específicos:

Conocer los diferentes protocolos de comunicaciones para dispositivos corporales y utilizarlos correctamente

Actividades vinculadas:

Clases teóricas i ejercicios de aplicación

Ejercicios de laboratorio:

Sistema de comunicaciones inalámbrico

Dedicación: 18h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 12h

Proyecto guiado

Descripción:

Proyecto práctico sobre un aspecto de los dispositivos corporales para desarrollar en la parte final del curso.

Objetivos específicos:

Integrar los conocimientos adquiridos durante el curso.

Dedicación: 38h

Grupo pequeño/Laboratorio: 8h Aprendizaje autónomo: 30h

Fecha: 26/07/2023 **Página:** 3 / 4

SISTEMA DE CALIFICACIÓN

30% examen final, 30% ejercicios prácticos, 40% proyecto guiado

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

A determinar

BIBLIOGRAFÍA

Básica:

- Zhu, Yifeng. Embedded systems with ARM cortex-M microcontrollers in assembly language and C. 3rd ed. E-Man Press LLC, 2017. ISBN 9780982692660.
- Di Paolo Emilio, Maurizio. Data acquisition systems : from fundamentals to applied design [en línea]. New York, NY: Springer, 2013 [Consulta: 14/04/2020]. Disponible a: http://dx.doi.org/10.1007/978-1-4614-4214-1. ISBN 9781461442141.

Fecha: 26/07/2023 **Página:** 4 / 4