

Guía docente 295621 - 295MB021 - Biomateriales Avanzados

Última modificación: 15/07/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO EN TECNOLOGÍAS BIOMÉDICAS AVANZADAS (Plan 2025). (Asignatura

obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán

PROFESORADO

Profesorado responsable: Canal Barnils, Cristina

Otros: Pegueroles Neyra, Marta

Mas Moruno, Carlos Gil Mur, Javier

CAPACIDADES PREVIAS

Conocimiento de los conceptos fundamentales y los principios de la aplicación de los biomateriales y ser capaces de aplicarlos a problemas del campo de la ingeniería biomédica. Comprensión de los criterios fundamentales que se deben cumplir para que un material pueda implantarse. Conocimientos fundamentales de biomateriales funcionales, liberación de fármacos.

RESULTADOS DE APRENDIZAJE

Conocimientos:

- K1. Relacionar conocimientos avanzados de biomecánica, biomateriales, implantes y prótesis para el diseño de dispositivos médicos.
- K3. Relacionar conocimientos avanzados de producto sanitario con conceptos de innovación tecnológica.
- K2. Reconocer estructuras avanzadas de análisis de datos y modelización.

Habilidades:

- S1. Elaborar análisis cinemáticos y dinámicos de sistemas biomecánicos mediante el método de los elementos finitos.
- S10. Utilizar las herramientas de análisis habituales en el mundo de la innovación tecnológica para evaluar oportunidades de negocio y elaborar propuestas de innovación en el campo de las Tecnologías Biomédicas.
- S9. Planificar las fases, tareas y actividades implicadas en el diseño y desarrollo de dispositivos y sensores biomédicos o procesado de datos biomédicos.
- S2. Utilizar adecuadamente las diferentes técnicas de fabricación, análisis y caracterización de biomateriales para su correcta selección y procesado en función de sus propiedades y de la aplicación deseada.

Competencias:

- C3. Identificar y analizar problemas que requieran tomar decisiones autónomas, informadas y argumentadas, para actuar con responsabilidad social, siguiendo valores y principios éticos.
- C1. Asumir responsabilidades en equipos de trabajo en la gestión de la producción, ya sea como un miembro más o realizando tareas de dirección o liderazgo.
- C4. Usar de forma solvente los recursos de información, gestionando la adquisición, estructuración, análisis y visualización de datos e información en el ámbito de su especialidad y valorando de forma crítica los resultados de esta gestión.
- C5. Utilizar la información científico-técnica para responder a cualquier demanda de modificación, innovación o mejora de dispositivos, productos y procesos ligados a la ingeniería biomédica para nuevas aplicaciones científicas o tecnológicas.

Fecha: 13/09/2025 **Página:** 1 / 4

METODOLOGÍAS DOCENTES

- AF.1.- Exposición de contenidos teóricos.
- AF.3.- Sesiones de trabajo práctico en el laboratorio.
- AF.4.- Discusión de casos y artículos científicos.
- AF.5.- Participación en seminarios y conferencias.
- AF.6.- Realización de trabajo individual y cooperativo.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Analizar las propiedades avanzadas de los biomateriales para adaptarlos a necesidades clínicas específicas.

Comprender las interacciones dinámicas entre biomateriales y sistemas biológicos.

Aplicar tecnologías innovadoras para el diseño y modificación de biomateriales.

Proponer soluciones a retos médicos mediante el uso de biomateriales avanzados.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	28,0	18.67
Horas aprendizaje autónomo	94,0	62.67
Horas grupo grande	28,0	18.67

Dedicación total: 150 h

CONTENIDOS

Biomateriales Avanzados

Descripción:

Tema 1: Introducción y contexto

- 1. Tipos, propiedades y aplicaciones de los biomateriales.
- 2. Propiedades avanzadas adaptadas a las necesidades clínicas.
- 3. Interacciones dinámicas entre biomateriales y biología.
- 4. Aplicaciones pioneras y futuro de los biomateriales.

Tema 2: Biomateriales en medicina con plasma

- 1. Introducción a la Medicina con Plasma: definición y clasificación del plasma, métodos de diagnóstico de plasma y mecanismos de interacción biológica del plasma.
- 2. Modificación de la superficie de biomateriales con plasma: mecanismos de modificación superficial, materiales duros y blandos, ejemplos y casos prácticos de implantes y biomateriales modificados con plasma.
- 3. Aplicaciones de la Medicina con Plasma con biomateriales. Plasma en la curación de heridas y regeneración. Terapia con plasma en el cáncer. Aplicaciones antimicrobianas. Plasma en la inmunomodulación.

Tema 3: Materiales biodegradables

- 1. Polímeros biodegradables con memoria de forma. Propiedades físico-químicas, diseño auxético, aplicaciones en medicina: implantes pediátricos.
- 2. Metales biodegradables. Degradación propiedades mecánicas y biocompatibilidad. Aleaciones metálicas biodegradables. Ensayos electroquímicos.
- 3. Aplicaciones médicas de materiales biodegradables en implantes ortopédicos, stents bioabsorbibles, ingeniería de tejidos, liberación de fármacos y regeneración nerviosa.

Tema 4: Biomateriales funcionales avanzados

- 1. Introducción. Evolución de los materiales y nuevas necesidades. Mimetismo, funcionalización y dinamismo en los materiales.
- 2. Biomateriales basados en factores de crecimiento para la regeneración tisular. Integrinas, factores de crecimiento y matriz extracelular. Factores de crecimiento en la práctica médica limitaciones, materiales Scavenger, inmovilización y funcionalización con miméticos de factores de crecimiento.
- 3. Biomateriales multifuncionales antibacterianos. Estrategias clásicas limitaciones. Multifuncionalidad, aplicaciones. Nanotopografías bactericidas y péptidos multifuncionales.
- 4. Biomateriales inteligentes sensibles a estímulos biomateriales dinámicos. Hidrogeles inteligentes, materiales sensibles al pH y la temperatura, a enzimas. Caso práctico: materiales inteligentes en el control de infecciones.

Tema 5: Regulación y retiradas del mercado

- 1. Introducción a la regulación: organismos reguladores y clasificación de biomateriales, dispositivos médicos.
- 2. Comercialización consideraciones en la esterilización y el acondicionamiento.
- 3. Retiradas de biomateriales y dispositivos médicos: introducción y casos reales. Propiedad intelectual y estrategias de marketing.

Objetivos específicos:

Analizar las propiedades avanzadas de los biomateriales para adaptarlos a necesidades clínicas específicas.

Comprender las interacciones dinámicas entre biomateriales y sistemas biológicos.

Aplicar tecnologías innovadoras para el diseño y modificación de biomateriales.

Proponer soluciones a retos médicos mediante el uso de biomateriales avanzados.

Actividades vinculadas:

Tema 1:

- Análisis de artículos científicos.
- Ejercicios sobre propiedades avanzadas de los biomateriales.

Tema 2:

- Discusión de casos prácticos.
- Prácticas de laboratorio:
- P1. Modificación de superficies con plasma
- P2. Difusión de especies reactivas en tejidos.

Tema 3

- Interpretación de resultados de caracterización de materiales biodegradables
- Prácticas de laboratorio:
- P3. Degradación de materiales metálicos (Mg, Zn y Fe)
- P4. Adaptabilidad de un polímero con memoria de forma y diseño auxético

Fecha: 13/09/2025 **Página:** 3 / 4

Tema 4:

- Discusión de artículos científicos
- Prácticas de laboratorio

Tema 5:

- Trabajo con el método del caso
- Conferenciante invitado

Dedicación: 150h Grupo grande/Teoría: 32h Grupo pequeño/Laboratorio: 24h Aprendizaje autónomo: 94h

SISTEMA DE CALIFICACIÓN

Notas de actividades dirigidas = 15%Notas de informes de prácticas (AP) = 25%Examen parcial (EP) = 15%Examen Final (EF) = 45%

Nota final (Nf): 0.15AD + 0.25AP + 0.15EP + 0.45EF

BIBLIOGRAFÍA

Básica:

- Redox biology in plasma medicine. Boca Raton, FL: CRC Press, 2024. ISBN 1003328059.
- Wagner, William R.; Sakiyama-Elbert, Shelly E.; Zhang, Guigen; Yaszemski, Michael J. Biomaterials science: an introduction to materials in medicine [en línea]. Fourth edition. London, England: Academic Press, 2020 [Consulta: 10/09/2025]. Disponible a: https://www-sciencedirect-com.recursos.biblioteca.upc.edu/book/9780128161371/biomaterials-science. ISBN 0128161388.

Fecha: 13/09/2025 Página: 4 / 4