

Guía docente 340604 - SEAI-R1010 - Sistemas Electrónicos Avanzados e Integración de Fuentes de Energía Eléctrica

Última modificación: 17/05/2023

Unidad responsable: Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE SISTEMAS AUTOMÁTICOS Y ELECTRÓNICA INDUSTRIAL (Plan

2012). (Asignatura obligatoria).

Curso: 2023 Créditos ECTS: 5.0 Idiomas: Castellano

PROFESORADO

Profesorado responsable: José Luis García de Vicuña

Otros: José Luis García de Vicuña

Miguel Castilla Férnandez

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

1. CC07 - Aplicar sistemas electrónicos de potencia como bloques de alimentación eléctrica. Identificar sistemas de gestión energética.

METODOLOGÍAS DOCENTES

Modelo de aprendizaje basado en problemas

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Conocer los Sistemas Electrónicos de Potencia y sus aplicaciones industriales.

Conocer el principio de operación y Control de los Sistemas de Integración de Fuentes de de Energía Eléctrica

Saber analizar y diseñar y controlar los sistemas Sistemas Electrónicos de Potencia

Conocer productos existentes en el mercado

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	80,0	64.00
Horas grupo grande	22,5	18.00
Horas grupo pequeño	22,5	18.00

Dedicación total: 125 h

CONTENIDOS

Modelado de Sistemas Electrónicos de Potencia

Descripción:

Modelado de convertidores y sistemas electrónicos de potencia. Convertidores DC-DC. Convertidores DC-AC y AC-DC tanto monofásicos como trifásicos. Modelado de sistemas de la electrónica de potencia: Sistemas de Alimentación Initerrumpida, Convertidores back to back, filtros activos, systemas fotovoltaicos.

Competencias relacionadas:

CC07. CC07 - Aplicar sistemas electrónicos de potencia como bloques de alimentación eléctrica. Identificar sistemas de gestión energética.

Dedicación: 4h

Grupo grande/Teoría: 4h

Simulación y control de Sistemas Electrónicos de Potencia

Descripción:

Descripción de un sistema electrónico de potencia: Convertidores , drivers, circuitos de acondicionamiento de señal, moduladores y controladores. Descripción de un proyecto en Sistemas Electónicos de Potencia: metodología de resolución y herramientas de simulación. Ejemplo de de diseño: especificaciones, diseño de controladores, resultados de simulación, alternativas en la implementación. Simulación del sistema descrito en el ejemplo. Propuestas de proyectos.

Competencias relacionadas:

CC07. CC07 - Aplicar sistemas electrónicos de potencia como bloques de alimentación eléctrica. Identificar sistemas de gestión energética.

Dedicación: 8h

Grupo grande/Teoría: 8h

Convertidores de Potencia Conectados a red: Operación e integración de sistemas de de generación distribuidos

Descripción:

Realización de un proyecto sobre el control de Convertidores de Potencia Conectados a la red eléctrica: diseño del controlador y simulacion.

Competencias relacionadas:

CC07. CC07 - Aplicar sistemas electrónicos de potencia como bloques de alimentación eléctrica. Identificar sistemas de gestión energética.

Dedicación: 1h

Grupo grande/Teoría: 1h

Aplicaciones de los convertidores de electronicos potencia en sistemas de potencia

Descripción:

Realización de un proyecto sobre el control de Convertidores de Potencia Conectados a la red eléctrica: aplicación a un caso práctico y presentación de resultados.

Competencias relacionadas:

CC07. CC07 - Aplicar sistemas electrónicos de potencia como bloques de alimentación eléctrica. Identificar sistemas de gestión energética.

Dedicación: 8h

Grupo grande/Teoría: 8h

SISTEMA DE CALIFICACIÓN

40% Ejercicios de Simulación y practicas de laboratorio 10% Valoración de competencias 50% Examenes

BIBLIOGRAFÍA

Básica

- Yazdani, Amirnaser; Iravani, Reza. Voltage-sourced converters in power systems: modeling, control, and applications [en línea]. Hoboken, N.J.: Wiley, 2010 [Consulta: 15/02/2024]. Disponible a: https://onlinelibrary-wiley-com.recursos.biblioteca.upc.edu/doi/book/10.1002/9780470551578. ISBN 9780470521564.
- Teodorescu, Remus; Liserre, Marco; Rodríguez Cortés, Pedro. Grid converters for photovoltaic and wind power systems [en línea]. Chichester, West Sussex: John Wiley & Sons, 2011 [Consulta: 15/02/2024]. Disponible a: https://onlinelibrary-wiley-com.recursos.biblioteca.upc.edu/doi/book/10.1002/9780470667057. ISBN 9780470667057.

Fecha: 25/02/2024 **Página:** 3 / 3