

Guía docente 480111 - GICA - Gestión Integral de los Ciclos Urbanos y Ecológicos del Agua

Última modificación: 22/05/2024

Unidad responsable: Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Barcelona

Unidad que imparte: 713 - EQ - Departamento de Ingeniería Química.

Titulación: MÁSTER UNIVERSITARIO EN CIENCIA Y TECNOLOGÍA DE LA SOSTENIBILIDAD (Plan 2013). (Asignatura

optativa).

Curso: 2024 Créditos ECTS: 5.0 Idiomas: Castellano

PROFESORADO

Profesorado responsable: JOAN DE PABLO RIBAS

Otros: AELEXANDER PRADA PEREZ

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 1. Integrar los conocimientos sobre gestión integrada del medio natural y los recursos naturales, en especial los recursos hídricos y energéticos, en el desarrollo y propuesta de soluciones científico tecnológicas a retos de la sostenibilidad.
- 3. Aplicar, analizar de forma crítica los resultados y evaluar las teorías, enfoques y metodologías de valorización integrada en los ámbitos de la alimentación y el desarrollo rural, las ingenierías agrícolas, del agua, la energía, la edificación, la construcción, el transporte y el territorio.
- 2. Aplicar los métodos y herramientas utilizados en la gestión integrada del medio natural y los recursos naturales, en la identificación, gestión de la información, planificación, gestión, ejecución y evaluación de programas y proyectos en los ámbitos de la ingeniería y tecnologías del agua.
- 5. Diseñar, desarrollar, aplicar y evaluar marcos conceptuales, teorías, metodologías y tecnologías de tratamiento de agua en contextos de promoción de desarrollo sostenible y la sostenibilidad.

Transversales:

4. TERCERA LENGUA: Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

METODOLOGÍAS DOCENTES

Durante el desarrollo de la asignatura se utilizarán las siguientes metodologías docentes:

Clase magistral o conferencia (EXP): exposición de conocimientos por parte del profesorado mediante clases magistrales o bien por personas externas mediante conferencias invitadas.

Resolución de problemas y estudio de casos (RP): resolución colectiva de ejercicios, realización de debates y dinámicas de grupo, con el profesor o profesora y otros estudiantes en el aula; presentación en el aula de una actividad realizada de forma individual o en grupos reducidos.

Trabajo teórico-práctico dirigido (TD): realización en el aula una actividad o ejercicio de carácter teórico o práctico, individualmente o en grupos reducidos, con el asesoramiento del profesor o profesora.

Proyecto, actividad o trabajo de alcance reducido (PR): aprendizaje basado en la realización, individual o en grupo, de un trabajo de reducida complejidad o extensión, aplicando conocimientos y presentando resultados.

Fecha: 30/10/2024 Página: 1 / 6

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Al finalizar la asignatura, los/las estudiantes:

- Deben saber caracterizar un agua residual de distinta procedencia y saber escoger la tecnología más adecuada para su tratamiento dentro del contexto.
- Deben saber caracterizar un agua de distinta procedencia y saber escoger la tecnología más adecuada para su potabilización.
- Deben reconocer las características de los sistemas sostenibles, los impactos de las soluciones de la ciencia y de la tecnología en la sostenibilidad, y deben ser capaces de identificar e incorporar elementos de innovación y mejora permanente.
- Han de ser capaces de desarrollar nuevos sistemas de tratamiento, predecir la eficiencia de los procesos.

Los estudiantes deben saber aplicar los conocimientos adquiridos a la resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Тіро	Horas	Porcentaje
Horas grupo grande	24,0	19.20
Horas grupo mediano	12,0	9.60
Horas aprendizaje autónomo	80,0	64.00
Horas grupo pequeño	9,0	7.20

Dedicación total: 125 h

CONTENIDOS

1. Introducción.

Descripción:

Situación mundial del agua. Efectos de la contaminación del agua en el medio ambiente. Contaminantes más usuales: origen agrícola, industrial y urbano. Eutrofización. Legislación: normativa europea, estatal, autonómica. Cánones. Calidad del agua: Definición y características. Índices de calidad

Objetivos específicos:

Conocer la situación mundial del agua y el origen de la contaminación. Conocer la legislación que la regula.

Actividades vinculadas:

Buscar normativas para casos de estudio.

Conocer web's que indican la situación mundial del agua.

2. Principales contaminantes del agua en distintos contextos.

Descripción:

Medida de la concentración de contaminantes en aguas residuales. Medida del contenido en compuestos orgánicos. Determinación del contenido en materia orgánica: métodos de determinación de parámetros de demanda de oxígeno. Métodos de determinación de parámetros basados en el contenido en carbono.

Objetivos específicos:

Conocer los parámetros que miden la calidad del agua.

Actividades vinculadas:

Buscar casos de contaminación.

Fecha: 30/10/2024 Página: 2 / 6

3. Tecnologías para tratamiento de aguas residuales.

Descripción:

Pre-tratamiento y tratamientos primarios, sedimentación.

Tratamientos secundarios: Lodos activos. Tratamiento de lodos

Tratamientos terciarios Eliminación de nitrógeno y fósforo. Humedales construidos. Digestión anaerobia. Comparación de tecnologías sostenibles y tecnologías convencionales. Casos prácticos.

Objetivos específicos:

Conocer los tratamientos convencionales y no convencionales de aguas residuales y comparar ambos tratamientos estudiando sus ámbitos de aplicación.

Actividades vinculadas:

Visita a una EDAR (estación de depuración de aguas residuales).

4. Tecnologías para potabilizar el agua.

Descripción:

Adsorción en carbón activo. Intercambio iónico. Ósmosis inversa. Electrodiálisis. Oxidación por cloración y ozonización. Desaladoras. Tratamientos no convencionales de potabilización de agua. Casos prácticos.

Objetivos específicos:

Conocer los tratamientos convencionales y no convencionales de depuración de aguas y comparar ambos tratamientos estudiando sus ámbitos de aplicación.

Actividades vinculadas:

Visita a una ETAP (Estación de tratamiento de agua potable).

5. Reutilización.

Descripción:

Legislación de la reutilización. Tecnologías que permiten reutilizar el agua. Parámetros que se han de controlar con la reutilización. Valoración energética. Casos prácticos.

Objetivos específicos:

Conocer la posibilidad de reutilizar un agua residual viendo el contexto legal y económico. Casos prácticos.

Actividades vinculadas:

Buscar casos prácticos de reutilización.

ACTIVIDADES

A1. CONOCIMIENTO DE LA SITUACIÓN MUNDIAL DEL AGUA

Descripción:

Estudio de casos y conocimiento de organismos internacionales que siguen la situación mundial del agua

Objetivos específicos:

Conocer algunas web's y organismos internacionales que cuidan de la situación mundial del agua.

Material:

Web's

Entregable:

Informe vía campus digital

Fecha: 30/10/2024 Página: 3 / 6

A2. BUENAS PRÁCTICAS EN SOSTENIBILIDAD DEL AGUA

Descripción:

Búsqueda de algún caso en que recientemente se haya realizado una "buena práctica" de la sostenibilidad en el agua.

Objetivos específicos:

Comprobar que hay gestión sostenible del agua en nuestro entorno.

Material:

Diverso, internet, periódicos, revistas...

Entregable:

Informe vía campus digital.

A3. CONOCIMIENTO DE CONTAMINACIÓN SEVERA DE LAS AGUAS EN ALGUNOS PAÍSES

Descripción:

Estudio de casos de contaminación grave en las aguas.

Objetivos específicos:

Buscar bibliografía científica de casos de contaminación grave.

Material:

Revistas científicas.

Entregable:

Informe vía campus digital.

A4. POTABILIZACIÓN SOSTENIBLE DEL AGUA

Descripción:

Estudio de distintas tecnologías sostenibles de potabilización del agua y discusión de los campos de aplicación.

Objetivos específicos:

Fomentar la discusión y las posibilidades de aplicación de distintas tecnologías de potabilización.

Material:

Libros, revistas científicas.

Entregable:

Informe vía campus digital.

A5. DEPURACIÓN SOSTENIBLE DEL AGUA

Descripción:

Estudio de distintas tecnologías para la depuración del agua. Discusión de su campo de aplicabilidad.

Objetivos específicos:

Fomentar la discusión y las posibilidades de aplicación de las distintas tecnologías de potabilización.

Material:

Libros, revistas científicas.

Entregable:

Informe vía campus digital.

Fecha: 30/10/2024 **Página:** 4 / 6

A6. REUTILIZACIÓN DEL AGUA

Descripción:

Estudio de casos de tecnologías de reutilización del agua. Normativa y campo de aplicabilidad.

Objetivos específicos:

Dar a conocer la reutilización del agua y su campo de aplicabilidad.

Material:

Libros, revistas científicas.

Entregable:

Informe vía campus digital.

A7. TRABAJO MONOGRÁFICO DE UN TEMA RELACIONADO CON EL PROGRAMA DE LA ASIGNATURA

Descripción:

Estudio de tecnologías del agua. Campo de aplicabilidad.

Objetivos específicos:

Profundizar en alguna tecnología del agua.

Material:

Libros, revistas científicas.

Entregable:

Informe vía campus digital. Presentación oral del trabajo.

SISTEMA DE CALIFICACIÓN

EV1 Prueba escrita de control de conocimientos (PE). 40%

EV2 Prueba oral de control de conocimientos (PO). 0%

EV3 Trabajo realizado a lo largo del curso (TR). 50%

EV4 Asistencia y participación en clases y laboratorios (AP). 10%

EV5 Rendimiento y calidad del trabajo en grupal (TG) 10%

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

EV3 TR, El trabajo realizado a lo largo del curso tiene dos aspectos diferentes, un trabajo realizado en grupo que tiene el 25% del peso de la evaluación y varios trabajos individuales no presencial con otro 25% en la evaluación.

BIBLIOGRAFÍA

Básica:

- Metcalf and Eddy. Wastewater engineering: treatment and resource recovery. 5th ed. New York: McGraw-Hill, 2014. ISBN 9780073401188.
- Ramalho, R.S. Tratamiento de aguas residuales. ed. rev. Barcelona: Reverté, 1996. ISBN 8429179755.

Complementaria:

- Peavy, H.S.; Rone, D.R.; Tehobanoglous, G. Environmental engineering. New York: McGraw-Hill, 1985. ISBN 0070491348.
- Water treatment handbook. 7th ed. Malmaison Cedex: Degrémont, 2007. ISBN 9782743009700.

Fecha: 30/10/2024 **Página:** 5 / 6

RECURSOS

Otros recursos:

Webs y artículos colgados en el campus digital.

Fecha: 30/10/2024 **Página:** 6 / 6