

Course guide 19602 - TISAA - Test and Instrumentation Systems in Aerospace Applications

Last modified: 09/06/2023

Unit in charge: Castelldefels School of Telecommunications and Aerospace Engineering

Teaching unit: 710 - EEL - Department of Electronic Engineering.

Degree: MASTER'S DEGREE IN AEROSPACE SCIENCE AND TECHNOLOGY (Syllabus 2015). (Optional subject).

MASTER'S DEGREE IN AEROSPACE SCIENCE AND TECHNOLOGY (Syllabus 2021). (Optional subject).

Academic year: 2023 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: Defined at the infoweb

Others: Defined at the infoweb

PRIOR SKILLS

- 1. Basic Circuit Analysis
- 2. Laplace transform, circuits in Laplace space, zeros, poles analysis.
- 3. Fourier Transform, frequency analysis.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific

CE2 MAST21. Apply systems engineering in the aerospace environment for the design and management of the different technological aspects associated with a mission.

Transversal:

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

The theoretical knowledge is presented in expository class sessions that are complemented with problem-solving class sessions. Practical knowledge is acquired through the development of a team project at the lab.

Date: 26/07/2023 **Page:** 1 / 3

LEARNING OBJECTIVES OF THE SUBJECT

When finishing this matter, students should be able to:

- 1. Design, implement and verify data acquisition systems
- 2. Specify, select, and test circuits, subsystems and instruments to measure physical quantities.
- 3. Design and perform experiments on circuits, electronic measurement systems and instruments, and assess the results.
- 4. Implement automatic test and virtual instrumentation systems.
- 5. Process data of acquisition or sensors systems.

STUDY LOAD

Туре	Hours	Percentage
Self study	80,0	64.00
Hours large group	45,0	36.00

Total learning time: 125 h

CONTENTS

Advanced Measurement

Description:

Understanding advanced instrumentation systems specifications and performance (Instruments seen as a black box)

Specific objectives:

Measurement Basics Errors & Uncertainty Accuracy & Calibration Interfacing instrumentation systems

Data Acquisition Rate

Full-or-part-time: 32h Theory classes: 16h Self study: 16h

Automatic Test Equipment

Description:

Understanding how to combine several (many) instrumentation systems to build a test system for an aerospace application, being able to choose among the several options existing currently in the market.

Specific objectives:

I/O Devices

Instrumentation Buses

Test Software

Full-or-part-time: 16h Theory classes: 8h Self study: 8h

Instrumentation Systems Design

Description:

Understanding what is inside instrumentation systems black box

Specific objectives:

Instrumentation systems building blocks

Noise

Interference

Full-or-part-time: 16h Theory classes: 8h Self study: 8h

Project-Laboratory

Description:

Design and implementation of a test system controlling several instrumentation systems to measure physical quantities

Specific objectives:

Building and automated test environment (Labview), automated control of instruments (using GPIB) and data-acquisition systems, measurements and uncertainties analysis.

Full-or-part-time: 61h Theory classes: 13h Self study : 48h

GRADING SYSTEM

BIBLIOGRAPHY

Basic:

- Merhav, Shmuel. Aerospace sensor systems and applications. Berlin: Springer-Verlag, cop. 1996. ISBN 0387946055.
- Pallás Areny, Ramón; Webster, John G. Sensors and signal conditioning. 2nd ed. New York [etc.]: John Wiley & Sons, cop. 2001. ISBN 9780471332329.

Date: 26/07/2023 **Page:** 3 / 3