

Course guide 205077 - 205077 - Data Mining and Machine Learning for Engineers

Last modified: 02/04/2024

Unit in charge: Teaching unit:	Terrassa School of Indust 723 - CS - Department of	rial, Aerospace and Audiovisual Engineering
Degree:	MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Optional subject). MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Optional subject). MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Optional subject).	
Academic year: 2024	ECTS Credits: 3.0	Languages: English

LECTURER

Coordinating lecturer: Alfredo Vellido

Others:

TEACHING METHODOLOGY

The course will develop as a mix of general lectures (theory sessions) imparted with the aid of powerpoint presentations and interactive tasks in which the whole class will debate on specific issues triggered by the reading of a limited number of key studies on the different topics of the course.

LEARNING OBJECTIVES OF THE SUBJECT

Networked computer environments are permeating all fields of human activity. This context is a continuous source of data and the use of this data for knowledge generation is the main aim of Data Mining (DM). The world of engineering is part of this paradigm shift towards data-based methods and can benefit from the integration of DM methodologies. The main general learning objective of this course is to serve as a gentle introduction to the concept of DM as a methodology for knowledge discovery. From there, we aim to provide students with the foundations to explore the many possible applications of DM to engineering problems.

STUDY LOAD

Туре	Hours	Percentage
Hours small group	10,5	14.00
Self study	48,0	64.00
Hours large group	16,5	22.00

Total learning time: 75 h

CONTENTS

Module 1: Introduction to Data Mining

Description:

Data Mining as an Umbrella concept. Defining the boundaries of the field

Full-or-part-time: 8h Theory classes: 2h Self study : 6h

Module 2: Data Mining as a Methodology

Description:

Linking the concepts of Data Mining and Knowledge Discovery in Databases (KDD) Data Mining as a structured methodology: CRISP DM

Full-or-part-time: 14h Theory classes: 6h Self study : 8h

Module 3: Topics in Data Mining

Description: Machine Learning for Data Mining. Information visualization. Interpretability and Ethics in Data Mining

Related activities: Brief essay

Full-or-part-time: 22h Theory classes: 8h Self study : 14h

Module 4: Data Mining General Case Studies

Description:

Full-or-part-time: 12h Theory classes: 4h Self study : 8h

Module 5: Data Mining Case Studies in Engineering

Description:

Related activities: Essay/experimental study

Full-or-part-time: 19h Theory classes: 7h Self study : 12h

GRADING SYSTEM

This course will be evaluated through individual essays written by students on different proposed topics. The essays could be either theoretical, experimental, or mixtures of both.

BIBLIOGRAPHY

Basic:

- Bishop, Christopher M. Pattern recognition and machine learning. New York: Springer, 2006. ISBN 9780387310732.
- Aggarwal, Charu C. Data mining: the textbook. New York: Springer, 2015. ISBN 9783319141411.

Complementary:

- Raschka, S.; Mirjalili, V. Python machine learning: machine learning and deep learning with Python, scikit-learn and TensorFlow. 2nd ed. Birmingham, UK: Packt Publishing, 2017. ISBN 9781787125933.