

Course guide 205126 - 205126 - Fundamentals of Hypersonic Aerodynamics

Unit in charge:	Terrassa School of Industri	ial, Aerospace and Audiovisual Engineering	Last modified: 02/04/2024
Teaching unit:	748 - FIS - Department of	Physics.	
Degree:	MASTER'S DEGREE IN AER MASTER'S DEGREE IN SPA	ONAUTICAL ENGINEERING (Syllabus 2014). (Option CE AND AERONAUTICAL ENGINEERING (Syllabus 20	al subject). 16). (Optional subject).
Academic year: 2024	ECTS Credits: 3.0	Languages: English	
LECTURER			
Coordinating lecturer:	Ferrer Ferre,	Alex	

Others:	Ferrer Ferre, Alex

TEACHING METHODOLOGY

LEARNING OBJECTIVES OF THE SUBJECT

Define and understand the principles of compressible flow. Explore the effects of compressibility on aerodynamic behavior. Examine gas dynamics concepts in the context of compressible and hypersonic flows. Understand shock waves, expansion waves, and their significance. Identify and explain unique features of hypersonic flows. Analyze the challenges and opportunities presented by hypersonic flight.

STUDY LOAD

Туре	Hours	Percentage
Self study	48,0	64.00
Hours large group	27,0	36.00

Total learning time: 75 h

CONTENTS

Foundations of Compressible Flow Description: Basic principles of compressible flow. Introduction to Burgers' equations and its relevance. Introduction to Euler equations. Thermodynamic concepts in compressible aerodynamics. Full-or-part-time: 18h 45m Theory classes: 6h 45m Self study : 12h

Numerical Techniques for Compressible Flows with Finite Elements

Description:

Overview of computational fluid dynamics (CFD) techniques with a focus on finite element methods. Simulate Burger' equation using finite element methods. Solving Euler equations and shock capturing with finite element methods.

Full-or-part-time: 18h 45m Theory classes: 6h 45m Self study : 12h

Fundations of Hypersonic flows

Description:

Characteristics of hypersonic flows. Thermal effects and high-temperature considerations. Thermodynamics of chemically reacting gases in hypersonic environments.

Full-or-part-time: 18h 45m Theory classes: 6h 45m Self study : 12h

Numerical Simulation of Hypersonic Flows

Description:

Specific challenges and considerations in simulating hypersonic flows numerically. Incorporating thermodynamics of chemically reacting gases in hypersonic flow simulations. Validation and verification of numerical simulations in hypersonic regimes.

Full-or-part-time: 18h 45m Theory classes: 6h 45m Self study : 12h

GRADING SYSTEM

2 small take-home assignments (50% of the final grade). 1 final project (50% of the final grade).

BIBLIOGRAPHY

Basic:

- Anderson, John David. Hypersonic and high-temperature gas dynamics. 2nd ed. Reston: American Institute of Aeronautics and Astronautics, cop. 2006. ISBN 9781563477805.

- Donéa, Jean; Huerta, Antonio. Finite element methods for flow problems [on line]. Chichester: John Wiley & Sons, cop. 2003 [Consultation: 24/04/2024]. Available on: <u>https://onlinelibrary-wiley-</u> com.recursos.biblioteca.upc.edu/doi/book/10.1002/0470013826. ISBN 9780471496663.