Course guide 230550 - INTRO - Introduction to Photonics. Optics and Lasers **Last modified:** 14/12/2023 Unit in charge: Barcelona School of Telecommunications Engineering **Teaching unit:** 748 - FIS - Department of Physics. Degree: MASTER'S DEGREE IN PHOTONICS (Syllabus 2013). (Compulsory subject). MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject). Academic year: 2023 ECTS Credits: 5.0 Languages: English ## **LECTURER** **Coordinating lecturer:** Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/respon sables-assignatura **Others:** Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/profess orat-assignat-idioma # **PRIOR SKILLS** 35 students # **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES** # Specific: - CE1. Demonstrate the understanding of physical fundamentals of classical optics and light-matter interaction - ${\sf CE2.\ Demonstrate\ the\ understanding\ of\ the\ peculiarities\ of\ the\ quantum\ model\ for\ light-matter\ interaction.}$ - CE3. Know the fundamentals of laser physics, the types of lasers and their main applications. # **Generical:** CG2. Ability to modeling, calculate, simulate, develop and implement in research and technological centers and companies, particularly in research, development and innovation tasks in all areas related to Photonics. CG4. Ability to understand the generalist and multidisciplinary nature of photonics, seeing its application, for example, to medicine, biology, energy, communications or industry ## Transversal: - 1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained. - 3. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships between planning, industrial and commercial strategies, quality and profit. - 2. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market. - 4. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available. **Date:** 15/12/2023 **Page:** 1 / 4 #### Basic: CB6. Possess and understand knowledge that provides a basis or opportunity to be original in the development and/or application of ideas, often in a research context CB7. Students should know how to apply the knowledge acquired and their problem-solving ability in new or little-known environments within broader (or multidisciplinary) contexts related to their area of ¿¿study. # **TEACHING METHODOLOGY** Lectures Exercises and applications Activities # **LEARNING OBJECTIVES OF THE SUBJECT** This course presents a general overview of the world of Photonics, introducing the fundamental aspects and physical phenomena concerning light and, especially, its interaction with matter (excluding pure propagation phenomena in uniform materials, in particular beam propagation, image formation and Fourier Optics, as they are considered in the course "Beam propagation & Fourier Optics"). At the same time, in many of the subjects the state-of-the art in research and the variety of applications of Photonics in Science & Technology will be pointed out. The course is given in the first semester, to allow the student better follow the different Master courses, in any of the itineraries he/she can choose) # **STUDY LOAD** | Туре | Hours | Percentage | |-------------------|-------|------------| | Hours large group | 40,0 | 32.00 | | Self study | 85,0 | 68.00 | Total learning time: 125 h # **CONTENTS** # 1.- Light. ## **Description:** - 1.1.- Light from classical electromagnetic point of view (review). Wave equation and electromagnetic waves. Different types of solutions. Classical properties of light and related quantities. - 1.2.- Quantum properties of light (introduction): photons, particle character and states of light, uncertainty and measurement. **Full-or-part-time:** 10h Theory classes: 10h ## 2.- Light-matter interaction. Basic physical phenomena. ## **Description:** - 2.1.- At atomic scale: linear interaction phenomena between light and one atom or molecule. Classical and semiclassical approaches. - 2.2.-Consequences at macroscopic scale: complex refractive index, dispersion and light velocities. Main physical phenomena of interaction of light with: dielectrics, semiconductors and metals (review). Plasmonics. Interaction with structured (photonic crystals, metamaterials) and confined (quantum dots, etc.) materials. - 2.3.- Introduction to Nonlinear optics. Perturbative phenomena, notion of solitons. - 2.4.- Effects due to the linear momentum of light: cooling & trapping of atoms, optical tweezers. **Full-or-part-time:** 12h Theory classes: 12h # 3.- Light-matter interaction. Primary devices ## **Description:** - 3.1.- Photoemitters by stimulated emission: lasers. Fundamentals, types, performances. Short-pulse generation. - 3.2.- Photoemitters by spontaneous emission (introduction): Thermal, LED's, etc. - 3.3.- Photodetectors: Power (thermal, quantum), position & image photodetectors **Full-or-part-time:** 10h Theory classes: 10h # 4.- Scientific and technological applications, research trends (broad overview) # **Description:** - 4.1.- Light playing a passive role.- Sensors, metrology (measurement of distances, profiles, microscopy imaging, velocities,...; beyond the optical resolution limit). Analysis of materials, remote sensing. - 4.2.- Light playing an active role.- Broad overview of Photonics applications, in different scientific fields and technology sectors: materials processing, energy, information technologies & telecomm., vision, photochemistry, etc. New fields: Nanophotonics, Biophotonics, Scientific applications (quantum information, etc.). **Full-or-part-time:** 5h 30m Theory classes: 5h 30m # **GRADING SYSTEM** - Partial exams and tests (30%) - Assignments and reports (30%) - Final exam (30%) - Attendance to classes, seminars and laboratory visits (10%) **Date:** 15/12/2023 **Page:** 3 / 4 # **BIBLIOGRAPHY** ## Basic: - Loudon, R. The quantum theory of light. 3rd. Oxford Clarendon Press, 2000. ISBN 9780198501763. - Svelto, Oracio. Principles of lasers [on line]. 5th. Springer, 2010 [Consultation: 02/05/2020]. Available on: https://ebookcentral.proguest.com/lib/upcatalunya-ebooks/detail.action?docID=973138. ISBN 9781441913012. - Saleh, B.E.A.; Teich, M.C. Fundamentals of photonics. 3rd ed. Hoboken: John Wiley & Sons, 2019. ISBN 9781119506874. - Kasap, Safa O. Optoelectronics and photonics: principles and practices. 2nd. Pearson, 2012. ISBN 9780273774174 (INT. ED.). - Trull, Jose. Photonics: an introductory course [on line]. Barcelona: Iniciativa Digital Politècnica, 2021 [Consultation: 28/07/2022]. Available on: https://upcommons.upc.edu/handle/2117/338169. ISBN 9788498808919.