

Course guide 230646 - MND - Micro and Nano Electronic Design

Last modified: 03/06/2022

Unit in charge: Teaching unit:	Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering.		
Degree:	MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Compulsory subject). MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject). MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).		
Academic year: 2022	ECTS Credits: 5.0 Languages: English		
LECTURER			
Coordinating lecturer:	JORDI MADRENAS BOADAS		
Others:	FRANCESC MOLL ECHETO, JORDI COSP VILELLA Madrenas Boadas, Jordi		

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Ability to design CMOS digital and analog integrated circuits of medium complexity.

- 2. Ability to apply low-power techniques to integrated circuits (ICs).
- 3. Ability to design for testability and test schemes for ICs.

Transversal:

4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

- Lectures
- Laboratory classes
- Laboratory practical work
- Group work (distance)
- Oral presentations
- Short answer test (Control)
- Extended answer test (Final Exam)

LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

The aim of this course is to train students in methods of integrated circuit design. First, state-of-the-art and trends in VLSI and their design implications are introduced. Then, basic analog and digital circuits are presented. In a second phase, low-power techniques and design for testability are developed. Lab projects are proposed to introduce the practical aspects of VLSI design and the CAE tools.

Learning results of the subject:

- Ability to understand the evolution of integrated technologies.
- Ability to identify cases and applications suitable for an integrated solution.
- Ability to analyze the characteristics of a mixed-signal integrated circuit.
- Ability to design analog and digital medium-complexity CMOS integrated circuits.

STUDY LOAD

Туре	Hours	Percentage
Hours small group	13,0	10.40
Self study	86,0	68.80
Hours large group	26,0	20.80

Total learning time: 125 h

CONTENTS

1. Introduction

Description:

- Structure of static gates.
- Manufacturing process. Masks. Layout.
- MOSFET models.
- State-of-the-art in VLSI. Full-custom and standard-cell design.

Full-or-part-time: 8h

Theory classes: 3h Self study : 5h

2. Basic digital blocks and their characterization

Description:

- The CMOS inverter. The NAND and NOR gates. Pass transistors. Tri-state. Latches. Flip-flops. Memory cells. Layout.
- Parasitic elements. Delay definitions. Logical effort.
- Power dissipation.

Full-or-part-time: 20h

Theory classes: 7h Laboratory classes: 2h Self study : 11h

3. Basic analog blocks and their characterization

Description:

- Current sources and mirrors.
- Basic amplifier stages.
- Voltage and current references.
- Matching. Transistor sizing. Layout.
- Small-signal model. Parasitics and frequency response.

Full-or-part-time: 20h Theory classes: 7h

Laboratory classes: 2h Self study : 11h

4. Practical aspects of VLSI design

Description:

- Buffering.
- Power and clock distribution.
- Input/output pads. Packaging.
- Low-power circuit- and architecture-level techniques.

Full-or-part-time: 16h

Theory classes: 5h Laboratory classes: 2h Self study : 9h

5. Basic concepts of testing

Description:

- Definitions. Manufacturing test. Defects and faults.
- Design for testability. Test coverage. ATPG.
- Self-test. Fault tolerance. System-level test.
- Design for manufacturability.

Full-or-part-time: 12h

Theory classes: 4h Laboratory classes: 2h Self study : 6h

6. Laboratory of VLSI design

Description:

- Introduction to CAE tools for VLSI. Layout editor. Electric and logic simulation. Synthesis. Placement & routing. Post-layout simulation.

- Design of a transconductor.
- Design of a simple digital processor.
- Design project: digitally-assisted analog front-end.

Full-or-part-time: 49h

Laboratory classes: 5h Self study : 44h

ACTIVITIES

LABORATORY

Description:

- Introduction to CAE tools for VLSI. Design rules, layout, electric and logic simulation, synthesis, placement & routing, backannotation.

- Design of a transconductor.

- Design of a simple digital processor.
- Design project. Front-end and back-end.

ORAL PRESENTATION

Description:

Presentation of a work group.

SHORT ANSWER TEST (CONTROL)

Description: Mid term control.

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description: Final examination.

GRADING SYSTEM

Final examination: 100% Only theory

BIBLIOGRAPHY

Basic:

- Weste, N.H.E.; Harris, D.M. CMOS VLSI design: a circuits and systems perspective. 4th ed. Boston: Addison Wesley, 2011. ISBN 9780321547743.

Complementary:

- Lin, Ming-Bo. Introduction to VLSI systems: a logic, circuit, and system perspective. Boca Ratón: CRC Press, 2012. ISBN 9781439868591.

- Baker, R.J. CMOS circuit design, layout, and simulation. 3rd ed. Hoboken, NJ: IEEE Press : Wiley, 2010. ISBN 9780470881323.