

Course guide 230994 - MALW - Malware

Last modified: 26/05/2023

Unit in charge: Barcelona School of Telecommunications Engineering **Teaching unit:** 701 - DAC - Department of Computer Architecture.

Degree: MASTER'S DEGREE IN CYBERSECURITY (Syllabus 2020). (Compulsory subject).

Academic year: 2023 ECTS Credits: 5.0 Languages: Catalan, Spanish, English

LECTURER

Coordinating lecturer: Consultar aquí / See here:

https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/respon

sables-assignatura

Others: Consultar aquí / See here:

https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/profess

<u>orat-assignat-idioma</u>

PRIOR SKILLS

The student must have previous knowledge of programming in Python, C, C++ and x86 assembler, code development, debugging and capacity of developing complex programs written in C++.

The student must have previous knowledge about operating systems and application development using the generic system call interface.

REQUIREMENTS

None

TEACHING METHODOLOGY

Theory, Laboratory, Cooperative work, Short exams, Advisement

LEARNING OBJECTIVES OF THE SUBJECT

- 1.- Know the concept of process and the operating system management structures.
- 2.- Know how to construct the logical address space of a process in a modern operating system together with the management structures to store that information.
- 3.- Know the differences between user mode and kernel mode.
- 4.- Know multithreading programming together with the per-thread management structures.
- 5.- Know the philosophy behind a Windows and Linux operating systems
- 6.- Know and differentiate the different malware categories
- 7.- Know every phase of a malware: intrusion, infection, obfuscation and payload
- 8.- Know the different alternatives to deploy a malware code in an operating system
- 9.- Know the different implementation of the infection phase of a malware code
- 10.- Know the different alternatives to obfuscate and hide malware
- 11.- Develop a malware able to infect and hide a Windows operating system $\,$
- 12.- Know the basic components of an antivirus software and how they work in a 32 and 64 bits Windows operating system
- 13.- Discuss the ethical implications of creating and propagating malware

Date: 30/09/2023 **Page:** 1 / 5

STUDY LOAD

Туре	Hours	Percentage
Hours small group	13,0	10.40
Self study	86,0	68.80
Hours large group	26,0	20.80

Total learning time: 125 h

CONTENTS

Operating system concepts

Description:

This chapter describes the concept of process together with the operating system management structures: PCB, page table (address translation), process sections and operating system calls in Windows.

Specific objectives:

Comprehend and understand how a system works internally

Related activities:

Cap

Full-or-part-time: 4h Theory classes: 4h

Malware categorization

Description:

This chapter describes the concept of malicious code and its different phases. The different malware categories will be presented highlighting the global and per-phase differences.

Specific objectives:

Understand the different forms malware can take

Related activities:

Lab

Full-or-part-time: 10h Theory classes: 2h Laboratory classes: 2h Self study: 6h

Date: 30/09/2023 **Page:** 2 / 5

Techniques of infection propagation

Description:

This chapter describes the current techniques of infection propagation: social engineering, exploits, buffer overflow, stack overflow... Techniques to store the malware in an infected machine will be discussed.

Specific objectives:

Understand how a virus works internally to be able to exploit a system

Related activities:

Lab

Full-or-part-time: 36h Theory classes: 4h Laboratory classes: 8h Self study: 24h

Obfuscation and malware stealth techniques

Description:

This chapter describes several techniques to prevent malware from being detected together with the mechanism to implement them: code injection, process hollowing and API redirection.

Specific objectives:

See how malware avoids detection even during its malicious activities

Related activities:

Lab

Full-or-part-time: 28h Theory classes: 6h Laboratory classes: 4h Self study: 18h

Pen Testing

Description:

This chapter will discuss about the most common vulnerabilities in nowadays applicacions, with special focus on web apps.

Specific objectives:

Understand OWASP techniques in its web part.

Related activities:

Lab

Full-or-part-time: 12h Theory classes: 4h Practical classes: 2h Self study: 6h

Date: 30/09/2023 **Page:** 3 / 5

Antivirus and Malware Ethics

Description:

This chapter describes the different components of an antivirus software and how they interact with the operating system. Malware counterattacks will be also discussed. And the ethical implications of malware.

Specific objectives:

See how an antivirus internally works to detect malware

Related activities:

Lab

Full-or-part-time: 29h Theory classes: 2h Laboratory classes: 2h Self study: 25h

Final examination

Description:

Final Examination

Full-or-part-time: 18h Guided activities: 2h Self study : 16h

GRADING SYSTEM

The evaluation of the course is composed by three major components:

- Final exam about the theory of the course
- Lab exam
- Project consisting in the implementation of several components of malware
- Presentations of other techniques implemented in malware

The final grade is composed by:

Final grade = 30% final exam + 20% Lab + 30% Project + 20% Presentations

EXAMINATION RULES.

No extra material allowed

BIBLIOGRAPHY

Basic:

- Andriesse, D. Practical binary analysis: build your own Linux tools for binary instrumentation, analysis, and disassembly [on line]. San Francisco: No Starch Press, 2019 [Consultation: 15/09/2022]. Available on: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=6060246. ISBN 9781593279127.
- Skoudis, E.; Zeltser, L. Malware: fighting malicious code. Upper Saddle River, NJ: Prentice Hall PTR, 2004. ISBN 0131014056.
- Ligh, M.H.; Case, A.; Levy, J.; Walters, A. The art of memory forensics: detecting malware and threats in Windows, Linux, and Mac Memory [on line]. Indianapolis, IN: John Wiley & Sons, 2014 [Consultation: 15/07/2020]. Available on: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=1740753. ISBN 9781118825044.

Complementary:

- Silberschatz, Abraham; Galvin, Peter B; Gagne, Greg. Operating system concepts. Global ed. (10th ed.). Hoboken: John Wiley &

Date: 30/09/2023 **Page:** 4 / 5

Sons, 2019. ISBN 9781119454083.

- Yosifovich, Pavel; Ionescu, Alex; Russinovich, Mark E; Solomon, David A. Windows internals: part 1: system architecture, processes, threads, memory management, and more. Seventh edition. Redmond, Washington: Microsoft Press, [2017]. ISBN 9780735684188.

RESOURCES

Other resources:

Atenea

Date: 30/09/2023 **Page:** 5 / 5