

Course guide 240IEN31 - 240IEN31 - Management and Energy Efficiency

Last modified: 16/05/2023

Unit in charge: Barcelona School of Industrial Engineering **Teaching unit:** 724 - MMT - Department of Heat Engines.

Degree: MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2014). (Optional subject).

Academic year: 2023 ECTS Credits: 4.5 Languages: Catalan

LECTURER

Coordinating lecturer: José Luis Martín Godoy

Others: Fernandez Francos, Xavier

REQUIREMENTS

thermodynamics, Thermal Engineering and Fluid Mechanics.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

CEEENE2. Manage the energetic chain (generation, transformation and use) to obtain the highest energetic efficiency in a process or product.

TEACHING METHODOLOGY

- B. Students will not face different activities scheduled throughout the year chronologically
- 1. Study the documentation provided on each topic
- ${\it 2. It promotes continuous work throughout the year with the proposal and collection problems.}\\$
- 3. Resolution of the Digital Campus exercises on the subject you are trying to classe (weekly)

LEARNING OBJECTIVES OF THE SUBJECT

Understanding and interpreting energy as a vector consisting of several components: thermodynamic, economic, environmental, affecting some thermal energy transformation processes. Students will learn to analyze and determine opportunities for energy savings in different scenarios (industrial, residential and tertiary), propose solutions and study their technical and economic viability, taking into account the current regulatory framework. As a practical case, they will carry out an audit and energy certification of a residential or tertiary building.

STUDY LOAD

Туре	Hours	Percentage
Self study	72,0	64.00
Hours large group	27,0	24.00
Hours small group	13,5	12.00

Total learning time: 112.5 h

CONTENTS

Introduction: Energy efficiency and energy management systems. ISO50001 standard

Description:

The overall concept of energy. Historical evolution of the use of energy. Different classifications of energy. Energy consumptions. Energy intensity. Energy efficiency and management systems.

Full-or-part-time: 1h 30m Theory classes: 1h 30m

Energy balances and Thermoeconomics

Description:

Energy costs. Case study: Analysis of the electricity bill and the Spanish electricity market. Energy and exergetic evaluation.

Thermoeconomics: a case study.

Full-or-part-time: 3h Theory classes: 3h

Energy audit and certification

Description:

Energy audits: objective, legal framework and procedure. Analysis of the energy efficiency of buildings through energy certification: control of energy demand and consumption. Economics analysis and environmental impact.

Full-or-part-time: 4h 30m Theory classes: 4h 30m

Production, distribution and use of heat

Description:

Efficiency in heat production in boilers and ovens. Distribution, recovery and internal use of heat. Centralized heating and cooling production: District Heating and Cooling

Full-or-part-time: 6h Theory classes: 6h

Cogeneration and Polygeneration systems

Description:

Concepts and definitions. Cogeneration technology and applications: industry, hotels, hospitals, supercomputing center and agricultural sector. Economic and exergetic analysis of cogeneration. Environmental impact. Legal framework.

Full-or-part-time: 3h Theory classes: 3h

Heat pumps

Description:

Heat pumps: type. Instant and seasonal COP. Energy and exergetic efficiency. Geothermal heat pump. Aerothermal for residential use. Heat pumps for industry.

Full-or-part-time: 3h Theory classes: 3h

Energy storage systems

Description:

We describe some electrical energy storage systems such as compressed air tanks, liquid air, reversible hydroelectric power stations, hydrogen production and fuel cells, batteries, ...

Full-or-part-time: 1h 30m Theory classes: 1h 30m

Project

Description:

In the development of the subject, active learning methodologies based on projects (PBL) and cooperative work will be employed. It will consist of an energy audit and certification of a tertiary or residential building.

Full-or-part-time: 12h Theory classes: 12h

GRADING SYSTEM

The qualification of the student will be

Nfinal 1 = 0.50 Nef + 0.15 Nprof + 0.35 Nproj

RETAKE: the retake exam replace the final exam + Nprof

Nfinal: Final note

Nef: Note final exam

Nproj: Note the project or course work Nprof: Note teacher's continuous assessment

EXAMINATION RULES.

The final exam, about 3h approximately consist of short questions and problems are.

During the short questions will not be allowed to consult any material, whereas the resolution of the problems must be take notes because occasionally conducting an exercise could be allowed to consult additional material which communicates the same

Date: 26/07/2023 **Page:** 3 / 4

BIBLIOGRAPHY

Basic:

- Eastop T.D.; D.R. Croft. Energy Efficiency: For Engineers and Technologists. Harlow, Essex: Longman Scientific & Technical, 1990. ISBN 047021645X.
- Doty, Steve; Turner; Wayne C. Energy Management Handbook. 8th ed. Lilburn, GA: CRC Press, 2013. ISBN 9781466578289.

Complementary:

- Rey Martínez, Francisco Javier ; Eloy Velasco Gómez ; Javier M. Rey Hernández. Eficiencia enérgetica de los edificios : certificación energética. Madrid: Paraninfo, 2018. ISBN 9788428339940.
- Redondo Rivera, Óscar. Eficiencia energética : Manual práctico de cálculos térmicos de edificios. Madrid: Fundación laboral de la construcción, 2013. ISBN 9788415205692.
- Sancho García, José ; Miró, Rafael ; Gallardo, Sergio. Gestión de la energia. Valencia: UPV, 2006. ISBN 8483630036.
- Dincer, Ibrahim; Marc Rosen. Exergy analysis of heating, refrigerating, and air conditioning: methods and applications [on line]. A msterdam: Elsevier, 2015 [Consultation: 14/09/2022]. Available on: https://www-sciencedirect-com.recursos.biblioteca.upc.edu/book/9780124172036/exergy-analysis-of-heating-refrigerating-and-air-conditioning. ISBN 9780124172036.
- Vicente Quiles, Pedro. DTIE 18.03 : integración de energías renovables en la rehabilitación energética de los edificios. Madrid: ATECYR, 2013. ISBN 9788495010520.
- Amidpour, Majid; Mohammad Hasan. Cogeneration and Polygeneration Systems [on line]. Amsterdam: London [et al.], 2021 [Consultation: 14/09/2022]. Available on: https://www-sciencedirect-com.recursos.biblioteca.upc.edu/book/9780128172490/cogeneration-and-polygeneration-systems. ISBN 978012817249.