

Course guide 250MEA005 - 250MEA005 - Energy Efficiency and Decarbonization

Last modified: 17/06/2024

Unit in charge: Teaching unit:	Barcelona School of Civil Engineering 713 - EQ - Department of Chemical Engineering.	27
Degree:	MASTER'S DEGREE IN ENVIRONMENTAL ENGINEERING (Syllabus 2024). (Compulsory subject).	
Academic year: 2024	ECTS Credits: 5.0 Languages: Spanish	

LECTURER

Coordinating lecturer:	JORDI LLORCA PIQUE
Others:	JORDI LLORCA PIQUE

TEACHING METHODOLOGY

The course consists of 3 hours per week of classes in which the teacher explains the concepts and basic materials, presents examples and exercises. Exercises are also performed to consolidate the course. Support materials are provided through the virtual campus ATENEA.

Although most of the sessions will be given in the language indicated, sessions supported by other occasional guest experts may be held in other languages.

LEARNING OBJECTIVES OF THE SUBJECT

STUDY LOAD

Туре	Hours	Percentage
Hours small group	9,8	7.83
Self study	80,0	63.95
Hours large group	25,5	20.38
Hours medium group	9,8	7.83

Total learning time: 125.1 h

CONTENTS

Current energy system and environmental impact

Description:

Energy: demand, primary sources, energy vectors. Sostenibilitat.Combustibles fossils. Impact of extraction and transport. Atmospheric impact. Emissions and uptake of renewable CO2.Energies. Energy efficiency. Energy savings Exercises.

Specific objectives:

Knowing the different energy sources, energy carriers and devices interconversion of energy; Understand the impact of the acquisition and use of energy to the environment; become familiar with the techniques of capture and use of CO2. Learn the different physical and chemical methods of using CO2.

Full-or-part-time: 26h 24m Theory classes: 8h

Practical classes: 3h Self study : 15h 24m

New technologies

Description:

Catalytic reduction, photocatalytic and electrochemical processing of CO2.Catalysts. Preparation and characterization and use. Principles of Green Engineering. Us of waste. Biomass. Biorefineries. Hydrogen: production, storage. Thermochemical cycles. Fuel cells.

Exercises.

Specific objectives:

Become familiar with catalysis and its importance in processes related to the transformation of energy; understand the principles and methods of the "green engineering".

Evaluate different routes for the conversion of biomass and biofuels; adopt criteria to different interconversion pathways of energy and use of energy carriers.

Full-or-part-time: 60h Theory classes: 18h Practical classes: 7h Self study : 35h

Evaluation

Full-or-part-time: 21h 36m Laboratory classes: 9h Self study : 12h 36m

GRADING SYSTEM

The mark of the course is obtained from a course group project (50%), a final exam (40%), and exercises (10%).

EXAMINATION RULES.

Both the course project and the exam are required.

BIBLIOGRAPHY

Basic:

- Ristinen, R.A.; Kraushaar, J.J.; Brack, J. T. Energy and the environment. 4th ed. Hoboken, New Jersey: Wiley, 2022. ISBN 9781119800255.

Complementary:

- Hinrichs, R.A.; Kleinbach, M.H.; Wade, R. Energy: its use and the environment. 6th ed. Pacific Grove, California: Brooks/Cole, Cengage Learning, 2023. ISBN 9780357719428.

- Llorca, J. El hidrógeno y nuestro futuro energético [on line]. Barcelona: Edicions UPC, 2010 [Consultation: 25/06/2024]. Available on: <u>https://upcommons.upc.edu/handle/2099.3/36579</u>. ISBN 9788498804188.