UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

Course guide

300257 - OPTIM - Optimization for Applied Engineering Design

Unit in charge:	Castelldefels School of Telecommunications and Aerospace Engineering
Teaching unit:	$744-$ ENTEL - Department of Network Engineering.
Degree:	MASTER'S DEGREE IN APPLIED TELECOMMUNICATIONS AND ENGINEERING MANAGEMENT (MASTEAM)
	(Syllabus 2015). (Compulsory subject).

Academic year: 2023 ECTS Credits: 3.0 Languages: English

LECTURER

Coordinating lecturer:

Others:

Cristina Cervelló-Pastor

Cristina Cervelló-Pastor

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

05 MTM. (ENG) Resolver problemas de optimización en el ámbito de las redes de comunicación.

Transversal:

03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Basic:

CB6. Possess and understand knowledge that provides a basis or opportunity to be original in the development and/or application of ideas, often in a research context.
CB10. Students will acquire learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous.

TEACHING METHODOLOGY

* Laboratory learning sessions
- Individual work delivered at the end of the session. Laboratory learning
- activities linked to the concepts of the slides.
- Reinforce the concepts using computer tools: problems solved at the laboratory.
- Lab sessions provide students with the opportunity to analyse, discuss, and solve problems, in addition to fostering the development of practical, technical and engineering skills.
- Students have to read and study the corresponding slides before coming to the lab.
* Project lab sessions
- Individual work delivered at the end of the session.
- Development of one project throughout the course.

LEARNING OBJECTIVES OF THE SUBJECT

The Optimization for Applied Engineering Design course is aimed at providing the participants with knowledge in applied optimization, with focus on the application of theory and methods in deterministic optimization and heuristic techniques for modeling and solving optimization problems originating from the area of communication and others areas.

STUDY LOAD

Type	Hours	Percentage
Hours medium group	27,0	36.00
Self study	48,0	64.00

Total learning time: 75 h

CONTENTS

Introduction to Optimization

Description:

Definition of an Optimization Problem. Unconstrained and Constrained Optimization.

Specific objectives:

* Definition of an Optimization Problem
- Components of an Optimization Problem
* Unconstrained Optimization
- Statement of an Optimization Problem
- Concepts
- Concavity and Convexity
- Conditions for local optimizers: Interior and Boundary cases
* Equality Constrained Optimization
-Conditions for local optimizers
* Inequality and Equality Constrained Optimization
- Conditions for local optimizers

Related activities:

Problems resolution
Control
Full-or-part-time: 15h
Practical classes: 5h
Self study : 10 h

Part I: Optimization with Engineering Applications

Description:

Network Optimization
Mixed Integer Programming
Multi-Objective Optimization

Specific objectives:

* Network Optimization
- Special type of linear Programming
- Continuous and Discrete Models
* Mixed Integer Programming
- Common IP Problems
- Technique for formulating CO problems as ILP
- Linearizing nonlinear functions
* Multi-Objective Optimization
- Definition of a MOP
- Pareto Optimal Solutions
- Solving Multi-objective Optimization Problems

Related activities:

Lab learning sessions
laboratory Project sessions
Control
Full-or-part-time: 48h
Practical classes: 18 h
Self study : 30h

Part II: Metaheuristics Optimization Algorithms

Description:

Introduction
Analysis of different algorithms
Specific objectives:

* Introduction
* Analysis of different algorithms depending on the progress of the course
- Evolutionary Algorithms
- Genetic Algorithms
- Differential Evolution Algorithms
- Ant Colony Optimization
- Particle Swarm Optimization
- Biogeography-based Optimization

Related activities:

Lab learning session
Laboratory Project session
Full-or-part-time: 12h
Laboratory classes: 4h
Self study : 8h

GRADING SYSTEM

Lab Learning Sessions: 20\%
Laboratory Project: 20\%
Mid-course control: 20\%
Final exam: 40\%

BIBLIOGRAPHY

Basic:

- Oki, Eiji. Linear programming and algorithms for communication networks : a practical guide to network design, control, and management. First edition. Boca Raton: CRC Press, [2012]. ISBN 9781138034099.
- Chong, Edwin Kah Pin; Ziak, Stanislaw H. An Introduction to optimization [on line]. 4th ed. Hoboken, N.J.: Wiley-Interscience, 2013 [Consultation: $\quad 26 / 07 / 2022$]. Available on: https://onlinelibrary-wiley-com.recursos.biblioteca.upc.edu/doi/book/10.1002/9781118033340. ISBN 9781118279014.

Complementary:

- Guenin, B. A Gentle introdution to optimization. Cambridge: Cambridge University Press, 2014. ISBN 9781107053441.
- Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Chichester ; New York: John Wiley \& Sons, 2001. ISBN 9780470743614.
- Simon, Dan. Evolutionary optimization algorithms : biologically inspired and population-based approaches to computer intelligence. New Jersey: John Wiley, 2013. ISBN 9780470937419.
- Rao, S. S. Engineering optimization : theory and practice. 4a ed. Hoboken, New Jersey: John Wiley \& Sons, cop. 2009. ISBN 9780470183526.
- Hart, William E. Pyomo - Optimization modeling in Python. Second edition. New York [etc]: Springer, [2017]. ISBN 9783319588193.

