Guia docent
240751 - 240751 - Ciència i Tecnologia dels Materials

Última modificació: 21/10/2022

Unitat responsable: Escola Tècnica Superior d'Enginyeria Industrial de Barcelona
Unitat que imparteix: 702 - CEM - Departament de Ciència i Enginyeria de Materials.

Curs: 2022 Crèdits ECTS: 6.0 Idiomes: Anglès

PROFESSORAT

Professorat responsable: Alcala Cabrelles, Jorge

Altres:

CAPACITATS PRÈVIES

Coneixements bàsics de càlculs de densitat en cristalls cúbics
Coneixements bàsics d'estructures cristal·lines cúbiques i hexagonals, inclosos els càlculs del factor d'empaquetament atòmic.

METODOLOGIES DOCENTS

Master classes, video recordings.

OBJECTIUS D'APRENETATGE DE L'ASSIGNATURA

To gain a basic knowledge of metallic, ceramic and polymeric materials.
To comprehend the interrelationship between microstructure and mechanical properties. Mechanical property tailoring.
To understand crystalline defects and microstructural development of metals.
To gain basic knowledge of the mechanical behavior of materials and associated testing procedures.
To use phase diagrams in understanding microstructural development of metals and ceramics.
Basic material processing routes.

HORES TOTALS DE DEDICACIÓ DE L'ESTUDIANTAT

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Hores</th>
<th>Percentatge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hores aprenentatge autònom</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hores grup petit</td>
<td>6,0</td>
<td>4.00</td>
</tr>
<tr>
<td>Hores grup gran</td>
<td>54,0</td>
<td>36.00</td>
</tr>
</tbody>
</table>

Dedicació total: 150 h
CONTINGUTS

Introduction

Descripció:
Material families and bondings

Objectius específics:
- Introduction to the three material families. Use of the periodic table.
- Ionic, metallic and secondary bondings. Electronegativity calculation.
- Atomic bonding, bonding energies and basic knowledge of atomic potentials.
- Relationship between the bonding energy, the elastic stiffness and the melting temperature.
- Intensive vs. extensive material properties.

Dedicació: 1h 30m
Grup gran/Teoria: 1h 30m

Crystalline structures in metals and ceramics

Descripció:
Basic understanding of crystalline structures in metals and ceramics. Crystalline vs amorphous structures

Objectius específics:
- Different face-centered cubic (FCC), body-centered cubic (BCC) and hexagonal closed-packed (HCP) structures in metals.
- Miller indices for planes and directions in the cubic system. Normality rule.
- Density and planar density calculations.
- Structures of ionic crystals. Cation to anion ratio and the resulting constructive units.
- Silicate structures
- Glass transition vs. melting temperature
- Glass modifiers
- Viscosity vs. density plots and their use in glass processing.

Dedicació: 4h
Grup gran/Teoria: 4h

Crystalline defects

Descripció:
Vacancies, dislocations, grain boundaries and free surfaces

Objectius específics:
- Point defects (Vacancies and self-interstitials). Maxwell-Boltzman statistics and Arrhenius-type relations.
- Vacancy density calculations and thermal-independent activation energies.
- Tetrahedral and octahedral sites in FCC and BCC cells.
- Grain boundaries: Low-angle grain boundaries and the Read-Shockley model. Generic grain boundaries, misorientation angle and grain boundary energy.
- Thermally-activated grain growth and grain growth kinetics. Apex angles in grain boundaries.
- Free surfaces and atomistic descriptions. Free surface energy.

Dedicació: 6h
Grup gran/Teoria: 6h
Solid state diffusion

Descripció:
Diffusion laws and atomic flux in materials

Objectius específics:
- Interstitial and substitutional (vacancy) diffusion.
- First Fick’s law. Diffusion coefficient and atomistic connection. Steady-state diffusion.
- Influence of crystal structure, density and melting temperature on diffusion.
- Second Fick’s law and non-steady state diffusion.
- Characteristic mathematical solutions for non-steady state diffusion.

Dedicació: 3h
Grup gran/Teoria: 3h

Phase diagrams

Descripció:
Introduction to binary phase diagrams and their use in predicting microstructures of key metallic materials and alloys.

Objectius específics:
- Eutectic diagram and non-equilibrium solidification. Dendrite formation in cast metals.
- Allotropic transformations.
- Peritectic, peritectoid and eutectoid reactions.
- Phase diagrams in steels, aluminum alloys, brass, bronze. Microstructural features.

Dedicació: 10h
Grup gran/Teoria: 10h

Polymers

Descripció:
Introduction to polymeric materials. Thermoplastics, thermosets and elastomers

Objectius específics:
- Monomers and repeat units. Polymeric chains, mean molecular weight.
- Copolymers.
- Polymer reactions and polymerization methods.
- Branched, cross-linked and network polymers.
- Polymer crystallinity and defects.
- Glass transition and melting temperatures in polymers.
- States of macromolecular aggregation.

Dedicació: 4h
Grup gran/Teoria: 4h
Mechanical behavior of Materials

Descripció:
Elastic and plastic responses of metals, ceramics and polymers

Objectius específics:
Elasticity in metals and ceramics. Rubber elasticity
Plasticity in metals. The stress-strain curve and its measurement. Associated mechanical properties.
Strain hardening and dislocation interactions.
Hardness measurements. Correlation between hardness and the uniaxial stress-strain curve.
Microstructural tailoring of metals and the prediction of the yield strength in engineering microstructures. Mechanical properties of steels
Plastic deformation in materials processing.
Fracture and fatigue in metals.
Creep and creep mechanisms in metals.
Mechanical properties of polymeric materials.

Dedicació: 12h
Grup gran/Teoria: 12h

SISTEMA DE QUALIFICACIÓ

One intermediate examen (E1) and one final exam. The final exam is comprised of three tests: The first is a theory examen (T), the second is a numerical exam comprising a set of problems (P), the third is a laboratory exam based on the laboratory activities of the course (L).

If the grade of the final exam is higher than that of the intermediate exam, then the final grade, FG, is obtained as:
\[FG = 0.60 \times T + 0.25 \times P + 0.15 \times L \]

If the grade of the final exam is smaller than that of the partial exam, then the final grade, FG, is obtained as:
\[FG = 0.35 \times E1 + 0.35 \times T + 0.15 \times P + 0.15 \times L \]