200021 - FIS - Physics

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
749 - MAT - Department of Mathematics
748 - FIS - Department of Physics

Academic year: 2018
Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 7,5 Teaching languages: Catalan

Teaching staff

Coordinator: ANA MARIA SERRA TORT
Others: Segon quadrimestre:
 JOSEP ELGUETA MONTO - A
 ELVIRA GUARDIA MANUEL - A
 ANA MARIA SERRA TORT - A

Opening hours

Timetable: Will be fixed the day of the first lecture.

Prior skills

Degree competences to which the subject contributes

Specific:
1. CE-2. Solve problems in Mathematics, through basic calculation skills, taking into account tools availability and the constraints of time and resources.

General:
5. CB-2. Know how to apply their mathematical knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader or multidisciplinary contexts related to Mathematics.
6. CB-3. Have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information, but that include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgements.
7. CG-1. Show knowledge and proficiency in the use of mathematical language.
10. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
12. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
11. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
200021 - FIS - Physics

Teaching methodology

The teaching activity is divided into three hours of theory (description and development of the topics presented in the syllabus) and two hours devoted to solving exercises as direct applications of the theory. Students will have access to resumés of each topic and a collection of related exercises that will be available in the web.

Learning objectives of the subject

Knowledge of: Newton's Laws, dynamics of particle systems, kinematic and dynamics of accelerated systems
Understand the concepts of work and energy
Understand the conservation laws.
Basic knowledge on electric and magnetic fields.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 187 h 30m</td>
<td>45 h</td>
<td>0 h</td>
<td>30 h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0 h</td>
<td>0 h</td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td>112 h 30m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study load: 112 h 30m = 60.00%
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dynamics of a particle. Newton Laws</td>
<td>37h 30m</td>
</tr>
<tr>
<td>Theory classes: 9h</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 6h</td>
<td></td>
</tr>
<tr>
<td>Self study: 22h 30m</td>
<td></td>
</tr>
<tr>
<td>2. Dynamic of a system of particles. Work and Energy</td>
<td>26h 30m</td>
</tr>
<tr>
<td>Theory classes: 5h 30m</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 5h</td>
<td></td>
</tr>
<tr>
<td>Self study: 16h</td>
<td></td>
</tr>
<tr>
<td>3. Changes of reference systems.</td>
<td>12h 30m</td>
</tr>
<tr>
<td>Description: Galilean relativity. Motion equations in rotation reference systems. The Coriolis theorem. The second Newton's law in non-inertial reference systems.</td>
<td></td>
</tr>
<tr>
<td>Theory classes: 3h</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 2h</td>
<td></td>
</tr>
<tr>
<td>Self study: 7h 30m</td>
<td></td>
</tr>
<tr>
<td>4. Gravity field</td>
<td>30h</td>
</tr>
<tr>
<td>Theory classes: 8h</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 4h</td>
<td></td>
</tr>
<tr>
<td>Self study: 18h</td>
<td></td>
</tr>
</tbody>
</table>
5. Electrostatics.

Learning time: 27h 30m
Theory classes: 6h
Practical classes: 5h
Self study: 16h 30m

Description:
Electric charge and structure of matter. Coulomb law and electric field. Continuum charge distribution. Gauss law for the electric field. Electrostatic potential. Field lines and equipotential surfaces. Electrostatic energy and energy density of an electric field. Conductor in electrostatic equilibrium.

6. Electrokinetics.

Learning time: 17h 30m
Theory classes: 3h
Practical classes: 4h
Self study: 10h 30m

Description:

7. Magnetostàtica

Learning time: 22h 30m
Theory classes: 5h
Practical classes: 4h
Self study: 13h 30m

Description:
Lorentz force. Motion of charged particles in a magnetic field. Magnetic forces on an electric current. Magnetic field created by an electric current: Biot and Savart law. Field lines and magnetic flux. Gauss law of magnetism. Ampère law.

8. Time dependent fields. Maxwell Equations

Learning time: 13h 30m
Theory classes: 3h 30m
Practical classes: 2h
Self study: 8h

Description:
Faraday-Lenz law. Motion-Induced electromotive force. Maxwell equations.
Qualification system

The subject is assessed by means of a midterm exam (P) and a final exam. The final exam can either embrace all the content covered throughout the term (F) or only the Electromagnetism (E). The final mark will be obtained as \(\text{max} \{1/2(P+E), F\} \). An extra exam will take place on July for students that failed during the regular semester.

Bibliography

Basic:

Complementary: