200152 - PM - Mathematical Programming

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 715 - EIO - Department of Statistics and Operations Research
Academic year: 2018
Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 7,5
Teaching languages: Catalan

Teaching staff

Coordinator: FRANCISCO JAVIER HEREDIA CERVERA
Others: Primer quadrimestre:
JORDI CASTRO PÉREZ - A, B
FRANCISCO JAVIER HEREDIA CERVERA - A, B
MARÍA PAZ LINARES HERREROS - A, B

Degree competences to which the subject contributes

Specific:
1. CE-2. Solve problems in Mathematics, through basic calculation skills, taking in account tools availability and the constraints of time and resources.
2. CE-3. Have the knowledge of specific programming languages and software.
3. CE-4. Have the ability to use computational tools as an aid to mathematical processes.

Generical:
4. CB-1. Demonstrate knowledge and understanding in Mathematics that is founded upon and extends that typically associated with Bachelor's level, and that provides a basis for originality in developing and applying ideas, often within a research context.
5. CB-2. Know how to apply their mathematical knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader or multidisciplinary contexts related to Mathematics.
6. CB-3. Have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information, but that include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgements.
7. CG-1. Show knowledge and proficiency in the use of mathematical language.
8. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
9. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in different contexts.
10. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
12. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
11. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
200152 - PM - Mathematical Programming

Teaching methodology

(Section not available)

Learning objectives of the subject

(Section not available)

Study load

<table>
<thead>
<tr>
<th>Total learning time: 187h 30m</th>
<th>Hours large group:</th>
<th>45h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>30h</td>
<td>16.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>112h 30m</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
200152 - PM - Mathematical Programming

Content

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Learning time: 23h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h 30m</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 3h</td>
<td></td>
</tr>
<tr>
<td>Self study : 16h</td>
<td></td>
</tr>
</tbody>
</table>

Description:
The Mathematical Programming. Building methodology of Mathematical Programming models. The paper of the models in the decision making process. Main types of Mathematical Programming: linears, integers, network flows, nonlinear, stochastics, etc.

<table>
<thead>
<tr>
<th>Linear Programming</th>
<th>Learning time: 47h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 13h 30m</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 6h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
<td></td>
</tr>
<tr>
<td>Self study : 25h</td>
<td></td>
</tr>
</tbody>
</table>

Description:

<table>
<thead>
<tr>
<th>Integer Linear Programming</th>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 4h</td>
<td></td>
</tr>
<tr>
<td>Self study : 8h 30m</td>
<td></td>
</tr>
</tbody>
</table>

Description:
There will be a non eliminatory midterm exam (ExP), a final exam (ExF), and a mark for practical assignments (Pr).

The final mark NF of the course will be:

\[
NF = \max\{ExF, 0.8 \times ExF + 0.2 \times Pr, 0.6 \times ExF + 0.2 \times ExP + 0.2 \times Pr\}
\]

An extra exam will take place on July for students that failed during the regular semester.

If the student fails, the extra evaluation will only consist of a resit exam (neither Pr nor ExP/ExF will be considered).

Unconstrained Nonlinear Programming

Learning time: 28h 30m
- Theory classes: 7h 30m
- Practical classes: 5h
- Self study: 16h

Description:

Constrained Nonlinear Programming

Learning time: 34h 30m
- Theory classes: 11h 30m
- Practical classes: 7h
- Self study: 16h

Description:

Qualification system

There will be a non eliminated midterm exam (ExP), a final exam (ExF), and a mark for practical assignments (Pr).

The final mark NF of the course will be:

\[
NF = \max\{ExF, 0.8 \times ExF + 0.2 \times Pr, 0.6 \times ExF + 0.2 \times ExP + 0.2 \times Pr\}
\]

An extra exam will take place on July for students that failed during the regular semester.

If the student fails, the extra evaluation will only consist of a resit exam (neither Pr nor ExP/ExF will be considered).

Bibliography

Basic: