200161 - MD - Discrete Mathematics

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 749 - MAT - Department of Mathematics
723 - CS - Department of Computer Science

Academic year: 2019
Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 7,5
Teaching languages: Catalan

Teaching staff

Coordinator: ORIOL SERRA ALBO

Others: Segon quatrimestre:
ALBERT ATSERIAS PERI - M-B
SIMEON MICHAEL BALL - M-A
MARINA GARROTE LOPEZ - M-A, M-B
ORIOL SERRA ALBO - M-A, M-B

Prior skills

The student must have acquired the contents of the first term degree in mathematics.

Degree competences to which the subject contributes

Specific:
1. CE-2. Solve problems in Mathematics, through basic calculation skills, taking into account tools availability and the constraints of time and resources.
2. CE-3. Have the knowledge of specific programming languages and software.
3. CE-4. Have the ability to use computational tools as an aid to mathematical processes.

General:
4. CB-1. Demonstrate knowledge and understanding in Mathematics that is founded upon and extends that typically associated with Bachelor's level, and that provides a basis for originality in developing and applying ideas, often within a research context.
5. CB-2. Know how to apply their mathematical knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader or multidisciplinary contexts related to Mathematics.
6. CB-3. Have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information, but that include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgements.
7. CG-1. Show knowledge and proficiency in the use of mathematical language.
8. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
9. CG-3. Have the ability to define new mathematical objects in terms of others already know and ability to use these objects in different contexts.
10. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
12. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
11. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Teaching methodology

(Section not available)

Learning objectives of the subject

(Section not available)

Study load

<table>
<thead>
<tr>
<th>Total learning time: 187h 30m</th>
<th>Hours large group: 45h 24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group: 0h 0.00%</td>
<td></td>
</tr>
<tr>
<td>Hours small group: 30h 16.00%</td>
<td></td>
</tr>
<tr>
<td>Guided activities: 7h 30m 4.00%</td>
<td></td>
</tr>
<tr>
<td>Self study: 105h 56.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>1. Combinatorics</th>
<th>Learning time: 72h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 15h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 11h</td>
</tr>
<tr>
<td></td>
<td>Self study: 46h</td>
</tr>
</tbody>
</table>

Description:
1.1 Enumerative Combinatorics

1.2 Recursions and Generating Functions

<table>
<thead>
<tr>
<th>2. Discrete Probability</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>

Description:

<table>
<thead>
<tr>
<th>3. Graph Theory</th>
<th>Learning time: 64h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 16h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 10h</td>
</tr>
<tr>
<td></td>
<td>Self study: 38h</td>
</tr>
</tbody>
</table>

Description:
3.1 Graphs

3.2 Trees

3.3 Eulerian and Hamiltonian Graphs

3.4 Matchings, Colorings and Planarity
The subject assessment will be based on a midterm exam P and a final exam F. The final grade will be 0.4P+0.6F.

The final exam will assess the topics not covered in the midterm; it will be possible to take an exam over the whole course material the day of the final exam.

An extra exam will take place on July for students that failed during the regular semester.

Bibliography

Basic:

Complementary: