Degree competences to which the subject contributes

Specific:
3. CE-1. Propose, analyze, validate and interpret simple models of real situations, using the mathematical tools most appropriate to the goals to be achieved.
4. CE-2. Solve problems in Mathematics, through basic calculation skills, taking into account tools availability and the constraints of time and resources.
5. CE-3. Have the knowledge of specific programming languages and software.
6. CE-4. Have the ability to use computational tools as an aid to mathematical processes.
7. Ability to solve problems from academic, technical, financial and social fields through mathematical methods.

General:
1. CB-4. Have the ability to communicate their conclusions, and the knowledge and rationale underpinning these to specialist and non-specialist audiences clearly and unambiguously.
2. To have developed those learning skills necessary to undertake further interdisciplinary studies with a high degree of autonomy in scientific disciplines in which Mathematics have a significant role.
3. CG-1. Show knowledge and proficiency in the use of mathematical language.
4. CG-2. Construct rigorous proofs of some classical theorems in a variety of fields of Mathematics.
5. CG-3. Have the ability to define new mathematical objects in terms of others already known and ability to use these objects in different contexts.
6. CG-4. Translate into mathematical terms problems stated in non-mathematical language, and take advantage of this translation to solve them.
7. CG-6 Detect deficiencies in their own knowledge and pass them through critical reflection and choice of the best action to extend this knowledge.

Transversal:
13. ENTREPRENEURSHIP AND INNOVATION: Knowing about and understanding how businesses are run and the sciences that govern their activity. Having the ability to understand labor laws and how planning, industrial and marketing strategies, quality and profits relate to each other.
14. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of social and economic phenomena that characterize the welfare society. Having the ability to relate welfare to globalization and sustainability. Being able to make a balanced use of techniques, technology, the economy and sustainability.
15. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

16. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.

17. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Teaching methodology

(Section not available)

Learning objectives of the subject

(Section not available)

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 30h</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
200248 - MNED - Numerical Methods for Differential Equations

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Learning time</th>
<th>Theory classes</th>
<th>Laboratory classes</th>
<th>Guided activities</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Partial Differential Equations (PDE). Generalities on their solution</td>
<td>Problems in engineering and the applied sciences requiring numerical solution of PDE. Linear 2nd order PDE: classification, physical interpretation. Fundamental aspects of their numerical solution. Boundary conditions.</td>
<td>26h</td>
<td>5h</td>
<td>5h</td>
<td>4h</td>
<td>12h</td>
</tr>
</tbody>
</table>
5. **Numerical solution of PDE with the Finite Difference Method (FDM)**

Description:

Learning time: 26h
- Theory classes: 5h
- Laboratory classes: 5h
- Guided activities: 4h
- Self study: 12h

6. **Introduction to boundary value problems. The shooting method. Other methods.**

Description:

Learning time: 26h
- Theory classes: 5h
- Laboratory classes: 5h
- Guided activities: 4h
- Self study: 12h

7. **Quality control of solutions**

Description:
Need for ensuring the quality of the solution. Concepts of verification and validation. Basic concepts for error estimates, estimate of quantities of interest. Remeshing and adaptivity.

Learning time: 15h
- Theory classes: 3h
- Laboratory classes: 3h
- Guided activities: 2h
- Self study: 7h

Qualification system
The final mark is given as a number from 0 to 10 (less than 5: fail; 5 or higher: pass; 8 to 10: excellent) obtained as the sum of three marks:
1) Coursework and public presentation of part of it: up to 3 points.
2) Short presentations given in class during the course: up to 1 point.
3) Written exams: up to 6 points.
200248 - MNED - Numerical Methods for Differential Equations

Regulations for carrying out activities

Attending a minimum of lessons is compulsory. Coursework and is compulsory as well as giving a short talk in class during the course.

Bibliography

Basic:

Complementary: