Course guide
200251 - DEB - Data Engineering and Blockchain

Unit in charge: School of Mathematics and Statistics
Teaching unit: 744 - ENTEL - Department of Network Engineering.
Degree: BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Optional subject).
Academic year: 2022 ECTS Credits: 3.0 Languages: English

LECTURER

Coordinating lecturer: JOSE LUIS MUÑOZ TAPIA
Others: Primer quadrimestre: JOSE LUIS MUÑOZ TAPIA - M-A

PRIOR SKILLS

Basic programming skills.

REQUIREMENTS

There are no pre-requisites.

TEACHING METHODOLOGY

Master classes mixed with practices.

LEARNING OBJECTIVES OF THE SUBJECT

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>15,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Self study</td>
<td>45,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 75 h
CONTENTS

<table>
<thead>
<tr>
<th>Introduction to cryptography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
<tr>
<td>Full-or-part-time:</td>
</tr>
<tr>
<td>Theory classes:</td>
</tr>
<tr>
<td>Practical classes:</td>
</tr>
<tr>
<td>Self study:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centralized digital currencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
<tr>
<td>Full-or-part-time:</td>
</tr>
<tr>
<td>Theory classes:</td>
</tr>
<tr>
<td>Practical classes:</td>
</tr>
<tr>
<td>Self study:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decentralization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Full-or-part-time:</td>
</tr>
<tr>
<td>Theory classes:</td>
</tr>
<tr>
<td>Practical classes:</td>
</tr>
<tr>
<td>Self study:</td>
</tr>
</tbody>
</table>
Blockchain and Proof of Work (PoW)

Description:
Blockchain and Proof of Work (PoW)

Specific objectives:
- Sybil attacks and consensus with Proof of Work (PoW).
- The blockchain.
- Verifying transactions.
- Attacks to PoW.
- Mining pools.
- Mining with Application-Specific Integrated Circuits (ASICs).
- Governance and forks.

Full-or-part-time: 12h 30m
- Theory classes: 2h 30m
- Practical classes: 2h 30m
- Self study: 7h 30m

Coin-based Ledgers

Description:
Coin-based Ledgers

Specific objectives:
- Unspent Transaction Outputs (UTXOs).
- Introduction to Bitcoin.
- Bitcoin’s script.
- Wallets and Hierarchical Deterministic (HD) wallets.

Full-or-part-time: 12h 30m
- Theory classes: 2h 30m
- Practical classes: 2h 30m
- Self study: 7h 30m

Balance-based ledgers

Description:
Balance-based ledgers

Specific objectives:
- Basic principles of balance-based ledgers.
- Attacks and countermeasures to balance-based ledgers.
- Introduction to Ethereum.
- Simulation of an Ethereum blockchain.

Full-or-part-time: 12h 30m
- Theory classes: 2h 30m
- Practical classes: 2h 30m
- Self study: 7h 30m
Smart contracts

Description:
Smart contracts

Specific objectives:
Introduction to programming smart contracts.
Basic game theory applied to smart contracts.
Study of use cases: remote purchase, tokenization, Initial Coin Offerings (ICOs).

Full-or-part-time: 15h
Theory classes: 3h
Practical classes: 3h
Self study: 9h

GRADING SYSTEM

35% partial test and questions.
35% Laboratory.
30% Final work (this is a work that will be delivered as a small research paper and that will be presented by students in the class).

BIBLIOGRAPHY

Basic: