205202 - SPAA - Highly Automated Production Systems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 707 - ESEII - Department of Automatic Control
Academic year: 2018
Degree: BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff
Coordinator: Rita Maria Planas Dangla
Others: Jan Pascual Alsina

Teaching methodology
The course is divided into parts:
- Theoretical and work group sessions
- Laboratory sessions
Self-study (including proposed exercises and activities) will be also contemplated.

In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding. Students, working in groups (8-10 students) will use the new concepts to specify its solution in order to solve the laboratory tasks. In the lab sessions, teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning.

Students will be able to be comfortable working on a Highly Automated Production System and must be able to implement a correct solution in order to obtain the complete and correct operation of the system consisting of a small flexible production line composed by 4 different stations emulating an Industrial task. At lab, students will work in groups (8-10 students), in order to promote contact and use the basic tools needed to solve problems. Students, independently, need to work on the materials provided by teachers in order to fix and assimilate the concepts. The teachers provide the syllabus and monitoring of activities (by ATENEA)
205202 - SPAA - Highly Automated Production Systems

Learning objectives of the subject

This course is based in the practical development of a "hands-on" application of a Highly Automated Systems real case study. The applications must be proposed by lecturers and includes a different set of technologies all of them often used in industrial environments (PLCs, OPC, SCADA systems, Industrial Robots, Industrial Communications, Vision Systems, User Interfaces, etc.). Applications will be developed by groups (8-10 students) and teachers will assess and supervise each student’s teamwork in order to help them in the project development and to solve possible doubts.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
## Content

<table>
<thead>
<tr>
<th>Module 1: Manufacturing processes:</th>
<th>Learning time: 12h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study : 7h 30m</td>
</tr>
</tbody>
</table>

### Description:
* FMS definition,  
* Need of FMS,  
* General FMS considerations,  
* Types of FMS,  
* Just In Time.

### Related activities:
Working in groups, to decide the right data structure in order to automatize a small FMS composed by 4 different stations.

<table>
<thead>
<tr>
<th>Module 2: FMS Components</th>
<th>Learning time: 37h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 15h</td>
</tr>
<tr>
<td></td>
<td>Self study : 22h 30m</td>
</tr>
</tbody>
</table>

### Description:
Composition of FMS:  
* hierarchy of computer control  
* Control software and Hardware components.  
* PLCs  
* System Communications  
* Automated material moviment (AGVs) and automated storage and retrieval systems (Highly automated warehouses)  
* Automated Inspection Systems  
* Safety components and Safety automation

### Related activities:
Working in groups, to realize the right control automation of each one of the fourth FMS line, including the artificial vision process, and a MMI (Man Machine Interface) as a user interface and interaction panel.
### Module 3: DataBases and Data Collectors

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM Database and Database Management Systems:</td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td>* DDBB Types,</td>
<td>Self study: 15h</td>
</tr>
<tr>
<td>* Management Information System,</td>
<td></td>
</tr>
<tr>
<td>* Manufacturing data collection systems</td>
<td></td>
</tr>
<tr>
<td>* Reporting</td>
<td></td>
</tr>
<tr>
<td>* KPIs</td>
<td></td>
</tr>
</tbody>
</table>

**Related activities:**
Working in groups, to configure system communications and realize the right database implementation in order to extract different reports related with the production of the FMS automatized line.

### Qualification system

- Laboratory test (individually): 20%
- Project results (in group): 50%
- Small project modification (individually): 30%

### Bibliography