205204 - High Performance Computing for Aerospace Engineering

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3

Teaching staff
Coordinator: Manel Soria

Prior skills
Prior skills:
Programming skills in C (preferably) or Fortran. Basic knowledge of interpreted languages such as Matlab

Teaching methodology
The course will be developed through theoretical lectures and hands-on sessions where the students will implement fragments of high performance computing codes for aerospace applications, and study the practical behaviour of new and classic parallel computers.

Learning objectives of the subject
Understand the need of high performance computing for aerospace engineering applications.
Understand the different computer architectures currently in use for high performance computing.
Understand why only some algorithms can run in parallel.
Understand the different parallel programming models.
Acquire hands-on experience in parallel programming using OpenMP.
Acquire hands-on experience in parallel programming using MPI.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
205204 - High Performance Computing for Aerospace Engineering

Content

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Learning time: 25h</th>
<th>Related activities:</th>
</tr>
</thead>
</table>
| **Module 1: Introduction to high performance computing for aerospace engineering applications** | * Motivations
 * Limitations of the sequential processors
 * Examples of problems in need of high performance computing
 * Introduction to parallel computer architectures
 * Shared memory model and distributed memory model | Theory classes: 10h
 Self study: 15h | Case study one: parallel algorithms for image processing
 Case study two: genetic algorithms for optimization
 Case study three: interplanetary trajectory analysis |
| **Module 2: OpenMP and MPI** | * Description of the standards
 * Hello world example | Theory classes: 10h
 Self study: 15h | Hands on workshops: implementation, debugging and benchmarking |
| **Module 3: Guided project** | * The students will select the topic of their project in agreement with the professor. | Theory classes: 10h
 Self study: 15h | |
Qualification system

Class participation and class exercises: 30%
Assignment: 30%
Project: 40%

Students with a grade below 5.0 in the project, or the assignments, or the classroom participation, will be able to take an additional written exam covering all the subject, that will take place the date fixed in the calendar of final exams. The grade obtained in this test will range between 0 and 10, and will replace that of the part or parts below 5.0 only in case it is higher, up to a maximum of 5.0 points.

Bibliography