205214 - SR - Safety Robotics and Automation for Industry 4.0

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2018
Degree:
- BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3 Teaching languages: English

Teaching staff
Coordinator: RITA MARIA PLANAS DANGLA
Others:

Teaching methodology

The course is divided into parts:

- Theoretical and work group sessions
- Laboratory sessions

Self-study (including proposed exercises and activities) will be also contemplated.

In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding. Students, working in groups will use the new concepts to specify its solution in order to solve the proposed challenge.

In the lab sessions, teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning.

Students, independently, need to work on the materials provided by teachers in order to fix and assimilate the concepts.

The teachers provide the syllabus and monitoring of activities (by ATENEA)

Learning objectives of the subject

This course is based on the practical development of a “hands-on” application on Safety Robotics and Automation under
Industry 4.0 specifications. The applications to be developed, will be proposed as real challenges from a leading company in the industrial security sector, and will be supervised by lecturers.

Depending on proposed challenges, applications will be developed by pairs or by groups and in both cases, teachers will assess and supervise each student’s teamwork in order to help them in the project development and to solve possible doubts.

- To acquire knowledge about Industry 4.0 and safety concepts and standards
- To acquire knowledge about industrial safety.
- To design safety automation
- To acquire knowledge about safety robotics.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>

Content

MODULE 1

Description:
- Introduction to Industry 4.0
- Introduction to Industrial Safety

- Safety Automation:
 - Safety Design (ISO 13849-1/ EN 62061)
 - Risk Assessment
 - Security components

- Safety Robotics.
 - Safety Design
 - Safe human-robot collaboration (COBOTS)
 - Security components

Related activities:
To develop the complete solution about safety automation and safety robotics for the given challenge. The developed work should cover all the steps to obtain a complete solution: Risk calculation, selection of components, physical installation of the different elements, secure controller programming, etc.
205214 - SR - Safety Robotics and Automation for Industry 4.0

Qualification system

Laboratory test (individually): 20%
Project results (in group): 50%
Oral presentation of the solution adopted to solve the challenge: 30%

Bibliography

Others resources:
Varied product manuals from the PILZ house